• Title/Summary/Keyword: $H_2$ uptake

Search Result 904, Processing Time 0.032 seconds

Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies

  • Thanhmingliana, Thanhmingliana;Lalhriatpuia, C.;Tiwari, Diwakar;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.203-210
    • /
    • 2016
  • Hybrid materials were obtained modifying the bentonite (BC) and local clay (LC) using hexadecyltrimethylammonium bromide (HDTMA) or the clay were pillared with aluminum followed by modification with HDTMA. The materials were characterized by the SEM, FT-IR and XRD analytical tools. The batch reactor data implied that the uptake of $17{\beta}$-estradiol (E2) by the hybrid materials showed very high uptake at the neutral pH region. However, at higher and lower pH conditions, slightly less uptake of E2 was occurred. The uptake of E2 was insignificantly affected changing the sorptive concentration from 1.0 to 10.0 mg/L and the background electrolyte (NaCl) concentrations from 0.0001 to 0.1 mol/L. Moreover, the sorption of E2 by these hybrid materials was fairly efficient since within 30 mins of contact time, an apparent equilibrium between solid and solution was achieved, and the data was best fitted to the PSO (pseudo-second order) and FL-PSO (Fractal-like-pseudo second order) kinetic models compared to the PFO (pseudo-first order) model. The fixed-bed column results showed that relatively high breakthrough volume was obtained for the attenuation of E2 using these hybrid materials, and the loading capacity of E2 was estimated to be 75.984, 63.757, 58.965 and 49.746 mg/g for the solids BCH, BCAH, LCH and LCAH, respectively.

Hexose Uptake and Kinetic Properties of the Endogenous Sugar Transporter(s) in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.327-332
    • /
    • 2005
  • Sf21 cells become popular as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains $0.1\%$ D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike human glucose transporters, very little is known about the characteristics of the endogenoussugar transporter(s) in Sf21 cells. Thus, some kinetic properties of the sugar transport system were investigated, involving the uptake of 2-deoxy-D-glucose (2dG1c). In order to obtain a true measure of the initial rate of uptake, the uptake of $[^3H]2dGlc$ from both low $(100{\mu}M)$ and high (10 mM) extracellular concentrations was measured over periods ranging from 30 sec to30 min. The data obtained indicated that the uptake was linear for at least 2 min at both concentrations, suggesting that measurements made over a 1min time course would reflect initial rates of the jexpse uptake. To determine $K_m\;and\;V_{max}$ of the endogenous glucose transporter(s) in Sf21 cells, the uptake of 2dG1c was measured over a range of substrate concentrations $(50{\mu}M\~10mM)$ 2dG1c uptake by the Sf21 cells appeared to involve both saturable and non-saturable (or very low affinity) components. A saturable transport system for 2dG1c was relatively high, the $K_m$ value for uptake being < 0.45 mM. The $V_{max}$ value obtained for 2dG1c transport in the Sf21 cells was about 9.7-folds higher than that reported for Chinese hamster ovary cells, which contain a GLUT1 homologue. Thus, it appeared that the transport activity of the Sf21 cells was very high. In addition, the Sf21 glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter

  • PDF

Factors Affecting Oxygen Uptake by Yeast Issatchenkia orientalis as Microbial Feed Additive for Ruminants

  • Lee, J.H.;Lim, Y.B.;Park, K.M.;Lee, S.W.;Baig, S.Y.;Shin, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1011-1014
    • /
    • 2003
  • The objective of this work was to evaluate a thermotolerant yeast Issatchenkia orientalis DY252 as a microbial feed additive for ruminants. In the present study, the influence of volatile fatty acids (VFA) and temperature on oxygen uptake rate by I. orientalis DY 252 was investigated. It was evident that the oxygen uptake rate was decreased gradually as the VFA concentrations increased in a range of 30 to 120 mM. Although the oxygen uptake rate was not greatly affected by temperature in the range 37 to $43^{\circ}C$, a maximum value of $0.45mg\;O_2/g$ cell/ min was obtained at $39^{\circ}C$. With regard to the oxygen uptake rate by yeast, viability was found to be less important than the metabolic activity of yeast.

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. II. Inhibitory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Park, Soo-Hyun;Koh, Hyun-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.425-434
    • /
    • 1997
  • Many reports represent that angiotensin II (ANG II) caused a dose dependent biphasic effects on fluid transport in the proximal tubule. However, respective roles of different signaling pathways in mediating these effects remain unsettled. The aim of the present study was to examine signaling pathways at high doses of ANG II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells(PTCs) in hormonally defined serum-free medium. High concentrations of ANG II $(>10^{-9}\;M)$ inhibited $Na^+$ uptake and increased $[Ca^{2+}]_i\;level$ in the PTCs. However, low concentrations of $(<10^{-11}\;ANG\;II)$ stimulated $Na^+$ uptake and did not affect $[Ca^{2+}]_i\;level$. 8-(N, N-diethylamino)-octyl-3,3,5- trimethoxybenzoate (TMB-8), ethylene glycol-bis$({/beta}-amino\;ethyl ether)-N,N,N'$, N'-tetra acetic acid (EGTA), and nifedifine partially blocked the inhibitory effects of ANG II on $Na^+$ uptake. When ANG II and bradykinin (BK) were treated together, $Na^+$ uptake was further reduced $(88.47{\pm}1.98%\;of\;that\;of\;ANG\;II,\;81.85{\pm}1.84%\;of\;that\;of\;BK)$. In addition, W-7 and KN-62 blocked the ANG II-induced inhibition of $Na^+$ uptake. Arachidonic acid reduced $Na^+$ uptake in a dose-dependent manner. When ANG II and arachidonic acid were treated together, inhibitory effects on $Na^+$ uptake significantly exhibited greater reduction than that of each group, respectively. When PTCs were treated by mepacrine $(10^{-6}\;M)$ and AACOCF3 $(10^{-5}\;M)$ for 1 hr before the addition of $(<10^{-9}\;ANG\;II)$, the inhibitory effect of ANG II was reversed. In addition, econazole $(>10^{-6}\;M)$ blocked ANG II-induced inhibition of $Na^+$ uptake. In conclusion, the $[Ca^{2+}]_i$ (calcium-calmodulin-dependent kinase) and phospholipase $A_2\;(PLA_2)$ metabolites are involved in the inhibitory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Effects of $aroP^{-}$ mutation on the tryptophan excretion in escherichia coli ($aroP^{-}$변이가 E.coli에서 트립토판 방출에 미치는 영향)

  • 지연태;안병우;이세영
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.9-12
    • /
    • 1985
  • As a part of the host cell development for a amplified recombinant trp operon, $aroP^-$ mutation was introduced in a E. coli host strain. $aroP^-$ mutation was induced by transposon Tn10 and transduced into the E. coli host cell by bacteriophage P1Kc. The effect of $aroP^-$ mutation on the excretion of tryptophan in E. coli $trpR^{-ts}/ColE_1 -trp^+$ cells was investigated. Mutant lacking the general aromatic transport system was resistant to ${\beta}-2-thienylalanine\;(2{\times}10^{-4}\;M)$, p-fluorophenylalanine $(2{\times}10^{-4}M)$, or 5-methyltryptophan $(2{\times}10^{-4}\;M.)[^3H]-tryptophan$ uptake of the $aroP^-$ mutant strain was reduced considerably as compared with $aroP^+$ counterpart. The rate of $[^3H]-tryptophan$ uptake of the $aroP^-$ mutant strain treated with $NaN_3(3{\times}10^{-2}\;M)$ was much less affected than that of $aroP^+$ counterpart. The $aroP^-$ transductants increased the tryptophan excretion from E. coli $trpR^{-ts}/ColE_1 -trp^+$ four times more than $aroP^+$ counterpart.

  • PDF

Donepezil, Tacrine and $\alpha-Phenyl-n-tert-Butyl Nitrone$ (PBN) Inhibit Choline Transport by Conditionally Immortalized Rat Brain Capillary Endothelial Cell Lines (TR-BBB)

  • Kang Young-Sook;Lee Kyeong-Eun;Lee Na-Young;Terasaki Tetsuya
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.443-450
    • /
    • 2005
  • In the present study, we have characterized the choline transport system and examined the influence of various amine drugs on the choline transporter using a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The cell-to-medium (C/M) ratio of $[^3{H}]choline$ in TR-BBB cells increased time-dependently. The initial uptake rate of $[^3{H}]choline$ was concentration-dependent with a Michaelis-Menten value, $K_{m}$, of $26.2\pm2.7{\mu}M$. The $[^3{H}]choline$ uptake into TR-BBB was $Na^{+}-independent$, but was membrane potential-dependent. The $[^3{H}]choline$ uptake was susceptible to inhibition by hemicholinium-3, and tetraethy-lammonium (TEA), which are organic cation transporter substrates. Also, the uptake of $[^3{H}]choline$ was competitively inhibited with $K_{i}$ values of $274 {\mu}M, 251 {\mu}M and 180 {\mu}M$ in the presence of donepezil hydrochloride, tacrine and $\alpha-phenyl-n-tert-butyl nitrone$ (PBN), respectively. These characteristics of choline transport are consistent with those of the organic cation transporter (OCT). OCT2 mRNA was expressed in TR-BBB cells, while the expression of OCT3 or choline transporter (CHT) was not detected. Accordingly, these results suggest that OCT2 is a candidate for choline transport at the BBB and may influence the BBB permeability of amine drugs.

Characterization of Microsomal $Ca^{2+}$ Uptake in Tomato Root Tissues (토마토 뿌리조직에서 분리한 마이크로솜의 $Ca^{2+}$ 흡수 특성)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.116-122
    • /
    • 1999
  • In order to characterize the property of $Ca^{2+}$ transport in plant cell, microsomes were prepared from the roots of tomato and microsomal $^{45}Ca^{2+}$ uptake was measured. When 1 mM vanadate, a selective inhibitor of P-type ATPases, 50 mM $NO_3^-$, a specific inhibitor of vacuolar $H^{+}-ATPase$, and both of these inhibitors were treated, the microsomal $^{45}Ca^{2+}$ uptakes were inhibited by 20, 33 and 47%, respectively. The inhibitory effects of these two inhibitors were investigated by using a protonophore, gramicidin. When the chemical gradient of $H^{+}$ was relieved by gramicidin, the uptake was decreased by 30%, implying the presence of $Ca^{2+}/H^+$ antiporter in the microsomal membrane. In the $^{45}Ca^{2+}$ uptake experiment, the effect of gramicidin was independent of vanadate-induced inhibition. However, when the activity of vacuolar $H^{+}-ATPase$ was inhibited by $NO_3^-$, the effect of gramicidin was severely decreased. Meanwhile, thapsigargin, a specific antagonist of ER/SR-type $Ca^{2+}-ATPase$, inhibited the microsomal $^{45}Ca^{2+}$ uptake and the maximum inhibitory effect was obtained at $10\;{\mu}M$. The effect of thapsigargin was blocked by $NO_3^-$ and gramicidin, but not by vanadate. These results imply that vanadate directly inhibits the activity of $Ca^{2+}-ATPase$; however, $NO_3^-$ and thapsigargin block the activity of $Ca^{2+}/H^+$ antiporter by inhibiting the vacuolar $H^{+}-ATPase$. In conclusion, the microsomal $^{45}Ca^{2+}$ uptakes are mediated by two major enzymes, $Ca^{2+}-ATPase$ and $Ca^{2+}/H^+$ antiporter in tomato root tissue.

  • PDF

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.

New CPS-PPEES blend membranes for CaCl2 and NaCl rejection

  • Chitrakar, Hegde;Arun, M. Isloor;Mahesh, Padaki;Ahmad, Fauzi Ismail;Lau, W.J.
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Carboxylated polysulfone (CPS), poly (1,4-phenylene ether ethersulfone) (PPEES), membranes were prepared and used for the separation of NaCl and $CaCl_2$, in efficient way with less energy consumption. In this work, nanofiltration and reverse osmosis membranes were employed to the salt rejection behavior of the different salt solutions. The influence of applied pressure (1-12 bar), on the membrane performance was assessed. In CM series of membranes, $CM_1$ showed maximum of 97% water uptake and 36% water swelling, whereas, $CM_4$ showed 75% water uptake and 28% water swelling. In RCM series, $RCM_1$ showed 85% water uptake and 32% water swelling whereas, in $RCM_4$ it was 68% for water uptake and 20% for water swelling. Conclusively reverse osmosis membranes gave better rejection whereas nanofiltration membrane showed enhanced flux. CM1 showed 58% of rejection with 12 L/($m^2$ h) flux and $RCM_1$ showed 55% of rejection with 15 L/($m^2$ h) flux for 0.1 wt.% NaCl solution. Whereas, in 0.1 wt.% $CaCl_2$ solution, membrane $CM_1$ showed 78% of rejection with 12 L/($m^2$ h) flux and $RCM_1$ showed 63% rejection with flux of 9 L/($m^2$ h).

EFFECTS OF CADMIUM CHLORIDE ON GLUCOSE TRANSPORT IN 3T3-L1 ADIPOCYTES

  • Kim, M.H.;Kim, K.S.;Lee, H.B.;Chae, S.H.;Jung, A.Y.;Jo, Y.Y.;Kim, M.H.;Moon, C.K.
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.158.2-159
    • /
    • 2003
  • Cadmium is well known as a toxic metal and has insulin mimicking effects in rat adipose tissue. To investigate the effect of CdCl2 on glucose transport and its mechanism, this study was performed in 3T3-L1 adipocytes. 10 and 25mM of CdCl2 exposed to cells for 12 hours increased 2-deoxyglucose uptake to 2.2 and 2.8 fold, respectively. Nifedipine, a calcium channel blocker, inhibited the 2-deoxyglucose uptake stimulated by CdCl2. (omitted)

  • PDF