• 제목/요약/키워드: $H_2$ uptake

검색결과 904건 처리시간 0.029초

The Application of Quantum Yield of Nitrate Uptake to Estimate New Production in Well-Mixed Waters of the Yellow Sea: A Preliminary Result

  • Park, Myung-Gil;Shim, Jae-Hyung;Yang, Sung-Ryull
    • Journal of the korean society of oceanography
    • /
    • 제37권1호
    • /
    • pp.45-50
    • /
    • 2002
  • New production (NP) values in well-mixed waters of the Yellow Sea were estimated using two different methods and were compared with each other; one is from the quantum yield model of nitrate uptake and chlorophyll ${\alpha}$-specific light absorption coefficient, and the other is from a traditional $^{15}N$-labelled stable isotope uptake technique. The quantum yields of nitrate uptake were highly variable, ranging from 0.0001 to 0.04 mol $NO_3Ein^{-1}$, and the small values in this study might have resulted from either the partitioning into nitrate uptake of little portions of light energy absorbed by phytoplankton or that phytoplankton may predominantly utilize other N sources (E. G. ammonium and/or urea) than nitrate. The estimates (0.54-8.47 nM $h^{-1}$) of NP from the quantum yield model correlated well ($r^2$=0.67, p<0.1) with those (0.01-4.93 nM $h^{-1}$) obtained using the $^{15}NO_3$ uptake technique. To improve the ability of estimating NP values using this model in the Yellow Sea, more data need to be accumulated in the future over a variety of time and space scales.

가토 근위세뇨관 Basolateral Membrane Vesicle에서 Succinate 이동 특성 (Succinate Transport in Rabbit Renal Basolateral Membrane Vesicles)

  • 김용근;배혜란;임병용
    • The Korean Journal of Physiology
    • /
    • 제22권2호
    • /
    • pp.307-318
    • /
    • 1988
  • 가토 신장 피질에서 Percoll density gradient방법으로 분리한 basolateral membrane vesicle (BLMV)에서 rapid filtration technique을 이용하여 succinate의 이동 특성을 관찰하였다. $Na^+$은 succinate의 이동을 증가시켜 "overshoot"현상을 보였으며 이러한 효과는 $K^+,{\;}Li^+,{\;}Rb^+,{\;}choline$과 같은 다른 양이온들에 의해 나타나지 않았다. $Na^+$농도변화에 따른 succinate의 이동율은 sigmoid모양을 보였고, $Na^+$에 대한 Hill coefficient는 2.0이었다. soccinate의 이동은 vesicle 내부가 음전압일 때 더욱 증가되었다. BLMV에서 succinate이동은 용액내 pH변화에 따라 영향을 받았으나 brush border membrane vesicle (BBMV)에서는 영향을 받지 않았다. 동력학적 분석결과 succinate의 Km값은 $15.5{\pm}0.94{\;}{\mu}M$이었고 Vmax는 $16.22{\pm}0.25{\;}n{\;}mole/mg{\;}protein/min$이었다. succinate의 이동은 $4{\sim}5$탄소를 가진 dicarboxylate들에 의해 강력하게 억제되었으나 monocarboxylate나 다른 유기음이온들에 의해 영향을 적게 받거나 받지 않았다. succinate의 이동은 DIDS, SITS, furosemide와 같은 음이온 이동 억제제와 harmaline과 같은 $Na^+$ 이동 억제제에 의해 억제되었다. 이들 결과들은 BLMV에서 succinate는 $Na^+$에 의존하여 이동하며 다른 Krebs cycle중간 산물들과 동일한 운반기전을 이용함을 가르킨다. 또한 BLMV에서 succinate의 이동은 그 기질특이성에 있어서 다른 연구자에 의해 보고된 BBMV에서 이동특성과 유사함을 보였다.

  • PDF

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. I. Stimulatory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Koh, Hyun-Ju;Park, Soo-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.413-423
    • /
    • 1997
  • The importance of the kidney in the development of hypertension was first demonstrated by Goldblatt and his colleagues more than fifty years ago. Many hormones and other regulatory factors have been proposed to play a major role in the development of hypertension. Among these factors angiotensia II (ANG II) is closely involved in renal hypertension development since it directly regulates $Na^+$ reabsorption in the renal proximal tubule. Thus the aim of the present study was to examine signaling pathways of low dose of ANC II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined seum-free medium. The results were as follows: 1) $10^{-11}$ M ANG II has a significant stimulatory effect on growth as compared with control. Alkaline phosphatase exhibited significantly increased activity. However, leucine aminopeptidase and ${\gamma}-glutamyl$ transpeptidase activity were not significant as compared with control. In contrast to $10^{-11}$ M ANG II stimulated $Na^+$ uptake $(108.03{\pm}2.16% of that of control)$, $10^{-9}$ M ANG II inhibited ($92.42{\mu}2.23%$ of that of control). The stimulatory effect of ANG II on $Na^+$ uptake was amiloride-sensitive and inhibited by losartan (ANG II receptor subtype 1 antagonist) and not by PD123319 (ANG II receptor subtype 2 antagonist). 2) Pertussis toxin (PTX) alone inhibited $Na^+$ uptake by $85.52{\pm}3.52%$ of that of control. In addition, PTX pretreatment prevented the AMG II-induced stimulation of $Na^+$ uptake. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), forskolin, and isobutylmethylxanthine (IBMX) alone inhibited $Na^+$ uptake by $88.79{\pm}2.56,\;80.63{\pm}4.38,\;and\;84.47{\pm}4.74%$ of that of control, respectively, and prevented the ANG II-induced stimulation of $Na^+$ uptake. However, $10^{-11}$ M ANG II did not stimulate cAMP production. 3) The addition of 12-O-te-tradecanoylphorbol-13-acetate (TPA, 0.01 ng/ml) to the PTCs produced significant increase in $Na^+$ uptake ($114.43{\pm}4.05%$ of that of control). When ANG II and TPA were added together to the PTCs, there was no additive effect on $Na^+$ uptake. Staurosporine alone had no effect on $Na^+$ uptake, but led to a complete inhibition of ANG II- or TPA-induced stimulation of Na'uptake. ANG II treatment resulted in a $111.83{\mu}4.51%$ increase in total protein kinase C (PKC) activity. In conclusion, the PTX-sensitive PKC pathway is the main signaling cascade involved in the stimulatory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Functional Expression of Choline Transporter-Like Protein 1 in LNCaP Prostate Cancer Cells: A Novel Molecular Target

  • Saiki, Iwao;Yara, Miki;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.195-201
    • /
    • 2020
  • Prostate cancer is one of the most common cancers in men. Choline PET or PET/CT has been used to visualize prostate cancer, and high levels of choline accumulation have been observed in tumors. However, the uptake system for choline and the functional expression of choline transporters in prostate cancer are not completely understood. In this study, the molecular and functional aspects of choline uptake were investigated in the LNCaP prostate cancer cell line along with the correlations between choline uptake and cell viability in drug-treated cells. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed in LNCaP cells. CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. [3H]Choline uptake was mediated by a single Na+-independent, intermediate-affinity transport system in the LNCaP cells. The anticancer drugs, flutamide and bicalutamide, inhibited cell viability and [3H]choline uptake in a concentration-dependent manner. The correlations between the effects of these drugs on cell viability and [3H]choline uptake were significant. Caspase-3/7 activity was significantly increased by both flutamide and bicalutamide. Furthermore, these drugs decreased CTL1 expression in the prostate cancer cell line. These results suggest that CTL1 is functionally expressed in prostate cancer cells and are also involved in abnormal proliferation. Identification of this CTL1-mediated choline transport system in prostate cancer cells provides a potential new therapeutic target for the treatment of this disease.

미역 포자엽 fucoidan의 중금속 흡착 특성 (Biosorption of Lead and Cadmium by Fucoidan from Undariafinnatifida)

  • 구재근
    • 한국수산과학회지
    • /
    • 제34권5호
    • /
    • pp.521-525
    • /
    • 2001
  • 국내에서 다량 생산되는 갈조류인 미역포자엽, 다시마, 톳, 모자반으로부터 fucoidan을 추출, 분획하여 Pb와 Cd의 흡착 특성을 조사하였다. 4종의 갈조류에서 추출한 fucoidan의 분획물 모두 Pb의 흡착량이 Cd보다 높았으며, 시료간에는 미역포자엽 분획물 (Fr-3.0)이 Pb와 Cd 모두 흡착력이 상대적으로 우수하였다. pH와 농도 변화에 따른 홉착력의 변화는 $C_f$ (잔류농도)가 50mg/L까지는 pH 간 차이가 없었으나, 농로가 증가함에 따라 pH 5.5 처리구가 다른 처리구에 비하여 흡착량이 증가하였다. 실험을 통하여 얻은 Pb 와 Cd의 최대 흡착량은 pH 5.5에서 각각 94mg/g ($C_f$164mg/L), 64mg/g ($C_f$197mg/L)였으며 Langmuir sorption model을 통해 구한 최대 흡착량은 pH 5.5에서 각각 178mg/g, 122mg/g이었다. Cd 공존시 Pb 흘착량은 $C_f$가 낮을 범위에서는 변화가 없었으나 $C_f$가 증가함에 따라 공존 이온의 흡착 방해로 인하여 감소하였다.

  • PDF

재조합 Saccharomyces cerevisiae에 있어서 반응조건에 따른 수용성 철의 생체 흡수 (Cellular Iron Uptake from Aqueous Solutions depending on Reaction Conditions by genetically engineered Saccharomyces cerevisiae)

  • 김상준;장유정;박충웅;정용섭;김경숙
    • KSBB Journal
    • /
    • 제19권6호
    • /
    • pp.441-445
    • /
    • 2004
  • 본 연구에서는 사람 ferritin H- 및 L-chain 유전자가 재조합된 효모 S. cerevisiae에 있어서 철의 생체 흡수 반응을 수행하였다. 재조합 효모는 $2\%$ galactose가 첨가된 YEP 배지에서 3일간 batch culture한 후, 20 mM MOPS buffer (pH 6.5) 에서 반응 균체 농도, 철 화합물 종류, 철 농도, 및 반응 시간 등을 고려하여 반응을 진행하였다. 이 실험 결과, ferritin H-chain 유전자를 발현하는 균주 YGH2에 있어서 균체 농도 100 mg/ml에서 균체 농도 200 mg/ml보다 높은 철 농도를 보였다. 그리고, 철 흡수 반응에 있어서 Fe(II)의 산화 상태가Fe(III)보다 훨씬 유리하였다. 철 농도의 증가에 따라 철 흡수량도 증가하였으며, 14.3 mM Fe(II)과 반응시 YGH2의 세포내 철 농도는 $16.7{\pm}0.7\;{\mu}mol/g$ cell wet wt.로 분석되었다. 철 흡수는 반응 시작 후 약 120분 경에 거의 최대치에 이르렀다.

초대배양한 신장 근위세뇨관세포에서 ANG II의 Na+ uptake 촉진효과에 대한 dopamine의 효과 (Effects of dopamine on angiotensin II-induced stimulation of Na+ uptake in primary cultured rabbit renal proximal tubule cells)

  • 고현주;박수현;한호재
    • 대한수의학회지
    • /
    • 제38권3호
    • /
    • pp.518-524
    • /
    • 1998
  • 신장 근위세뇨관세포들은 사구체에서 여과된 물질의 재흡수, 분비 및 대사에 관여하는 여러 호르몬들의 수용체들을 가지고 있다. 이들중에서 dopamine(DA)과 angiotensin II(ANG II)가 $Na^{+}/H^{+}$ 상호운반계 조절에 중요한 역할을 하고 있다. 본 연구는 초대배양한 토끼 신장 근위세뇨관세포의 $Na^+$ uptake에 있어서 DA과 ANG II의 상호관계를 알아보고자 실시하였다. DA은 농도의존적으로 $Na^+$ uptake를 유의성 있게 억제하였다($10^{-6}M$ ; $83.2{\pm}7.2%$, $10^{-3}M$ ; $67.2{\pm}3.8%$ vs. control)(p<0.05). $DA_1$ 작동제(SKF 38393, $10^{-6}M$)는 대조군의 $81.4{\pm}6.7%$ 까지 $Na^+$ uptake를 유의성 있게 억제하였으나(p < 0.05) $DA_2$ 작동제는 영향을 미치지 않았다. $DA_1$ 길항제(SCH 23390, $10^{-6}M$)에 의해 DA의 $Na^+$ uptake 억제효과는 차단되었으나 $DA_2$ 길항제(spiperone, $10^{-6}M$)에 의해서는 영향을 받지 않았다. DA과 대조적으로 $10^{-11}M$ ANG II는 $AT_1$ 수용체를 통하여 대조군의 $120.7{\pm}4.9%$까지 $Na^+$ uptake를 유의성 있게 촉진하였다. (p < 0.05). DA 및 $10^{-11}M$ ANG II를 병합처리하였을 때 DA은 농도의존적으로 ANG II에 유도된 $Na^+$ uptake 촉진효과를 유의성 있게 차단하였다(p<0.05). 한편 ANG II에 의해 유도된 $Na^+$ uptake촉진작용은 $DA_1$ 또는 $DA_2$ 작동제에 의해 차단되었으나 DA에 의한 차단 효과는 $DA_1$$DA_2$ 길항제를 병합처리하였을 때만 반전되었다. 결론적으로 DA은 $DA_1$ 수용체를 통하여 $Na^+$ uptake를 억제하였으나 ANG II에 의한 $Na^+$ uptake 촉진작용의 억제에는 $DA_1$$DA_2$ 수용체 모두가 관여하였다.

  • PDF

Molecular and Functional Characterization of Choline Transporter-Like Proteins in Esophageal Cancer Cells and Potential Therapeutic Targets

  • Nagashima, Fumiaki;Nishiyama, Ryohta;Iwao, Beniko;Kawai, Yuiko;Ishii, Chikanao;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.399-408
    • /
    • 2018
  • In this study, we examined the molecular and functional characterization of choline uptake in the human esophageal cancer cells. In addition, we examined the influence of various drugs on the transport of [$^3H$]choline, and explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. We found that both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were highly expressed in esophageal cancer cell lines (KYSE series). CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is both $Na^+$-independent and pH-dependent. Choline uptake and cell viability were inhibited by various cationic drugs. Furthermore, a correlation analysis of the potencies of 47 drugs for the inhibition of choline uptake and cell viability showed a strong correlation. Choline uptake inhibitors and choline deficiency each inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be involved in choline uptake in mitochondria, which is the rate-limiting step in S-adenosylmethionine (SAM) synthesis and DNA methylation. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for esophageal cancer therapy.

Effects of oral caffeine and capsaicin administration on energy expenditure and energy substrates utilization in resting rats

  • Kim, Jisu;Jeon, Yerim;Hwang, Hyejung;Suh, Heajung;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제15권4호
    • /
    • pp.183-189
    • /
    • 2011
  • Caffeine and capsaicin increase resting energy metabolism. However, most measurements have been conducted in short-term studies. Therefore, we investigated the effects of caffeine and capsaicin on energy expenditure and energy substrate utilization in resting rats for 6 h. The caffeine (Experiment 1) experiment included four male rats aged 5 weeks and measured the effects of oral administration of caffeine (10 or 50 mg/kg) on respiratory gas, energy expenditure, and energy substrate oxidation for 6 h. Experiment 2 included four male rats aged 6 weeks to measure the effects of capsaicin (10 mg/kg) using the same method as in Experiment 1. The results of Experiment 1 indicated that O2 uptake and carbohydrate oxidation after caffeine administration for 2 h was higher in the 10 mg trial than that in the 50 mg or placebo trials (P < 0.05). However fat oxidation was not significantly different. In contrast, capsaicin (Experiment 2) observed no differences between the placebo and the capsaicin trials. In conclusion, caffeine initially increased the resting energy consumption for 2 h, and this energy expenditure was due to carbohydrate oxidation. Capsaicin did not change oxygen uptake, respiratory exchange ratio, fat oxidation, or carbohydrate oxidation.

Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies

  • Thanhmingliana, Thanhmingliana;Lalhriatpuia, C.;Tiwari, Diwakar;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.203-210
    • /
    • 2016
  • Hybrid materials were obtained modifying the bentonite (BC) and local clay (LC) using hexadecyltrimethylammonium bromide (HDTMA) or the clay were pillared with aluminum followed by modification with HDTMA. The materials were characterized by the SEM, FT-IR and XRD analytical tools. The batch reactor data implied that the uptake of $17{\beta}$-estradiol (E2) by the hybrid materials showed very high uptake at the neutral pH region. However, at higher and lower pH conditions, slightly less uptake of E2 was occurred. The uptake of E2 was insignificantly affected changing the sorptive concentration from 1.0 to 10.0 mg/L and the background electrolyte (NaCl) concentrations from 0.0001 to 0.1 mol/L. Moreover, the sorption of E2 by these hybrid materials was fairly efficient since within 30 mins of contact time, an apparent equilibrium between solid and solution was achieved, and the data was best fitted to the PSO (pseudo-second order) and FL-PSO (Fractal-like-pseudo second order) kinetic models compared to the PFO (pseudo-first order) model. The fixed-bed column results showed that relatively high breakthrough volume was obtained for the attenuation of E2 using these hybrid materials, and the loading capacity of E2 was estimated to be 75.984, 63.757, 58.965 and 49.746 mg/g for the solids BCH, BCAH, LCH and LCAH, respectively.