• Title/Summary/Keyword: $H_2$ Production

Search Result 8,653, Processing Time 0.039 seconds

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.

Hydrogen production by anodized $TiO_2$ nanotube under UV light irradiation (양극 산화된 $TiO_2$ nanotube를 이용한 수소 생산 연구)

  • Hong, Won-Sung;Park, Jong-Hyeok;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.495-498
    • /
    • 2008
  • Photocatalytic water splitting into $H_2$ and $O_2$ using semiconductors has received much attention, especially for its potential application to direct production of $H_2$ for clean energy from water utilizing solar light energy. Since the report of Fujishima and Honda on the water splitting by photoelectrochemical cells, numerous different semiconducting materials have been used as photocatalysts for hydrogen generation from water. Among them, platinized titania significantly accelerates hydrogen production from water. For geometrical improvement of $TiO_2$ particle, porous $TiO_2$ structure was proposed and studied such as nanofiber, nanorod and nototubes. This research focuses on finding out the optimum temperature and electrolyte to produce $H_2$ by solar water splitting.

  • PDF

$CO_2$ Production in Fermentation of Dongchimi (Pickled Radish Roots, Watery Radish Kimchi) (동치미의 발효중 $CO_2$ 발생특성)

  • 이동선;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1021-1027
    • /
    • 1997
  • $CO_2$production in fermentation of dongchimi was measured and interrelated with changes in pH and titratable acidity. The effects of salt content and temperature on $CO_2$production rate were analysed. Fermentation of dongchimi showed drastic pH decrease in early stage and subsequent levelling off around 3.9, with linearly increased acidity up to 0.3~0.4% optimum quality. $CO_2$production of dongchimi could be analysed to consist of two consecutive stages of constant rate. The first stage $CO_2$production of higher rate moved to the second stage of lower rate when acidity rose beyond 0.3%. When compared to those of 1 and 2% salt content, dongchimi of 3% salt showed lower $CO_2$production rate in the 1st stage and slower acidity change through the whole fermentation period. However, it resulted in the product of highest $CO_2$accumulation at optimal ripeness because of consistent $CO_2$production of longer 1st stage period and relatively high $CO_2$production rate in 2nd stage. $CO_2$production depended on temperature less compared to acidity change(activation energy: 57.3 and 44.3kJ/mol for $CO_2$production of 1st and 2nd stages, respectively; 79.3kJ/mol for acidity change), which means higher ratio of $CO_2$production rate relative to acidity increase at lower temperature. Slower increase in acidity at low temperature also was shown to extend the period of 1st stage $CO_2$production. Therefore, low temperature fermentation was effective in producing the high $CO_2$content dongchimi at adequate acidity, which is desirable organoleptically.

  • PDF

Studies on the Conditions of Enzyme Production of Endocellular Cytosine Deaminase from Aspergillus fumigatus IFO 5840 (Aspergillus fumigatus IFO 5840의 균체내 Cytosine Deaminase의 생성에 관한 연구)

  • 김재근;하영득
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.179-186
    • /
    • 1991
  • The nutritional requirement and cultural condition such as carbon and nitrogen sources, cultural temperature, initial pH, cultural time and aeration for the production of endocellular cytosine deaminase from Aspergillus fumigatus IFO 5840 were investigated. The cultural broth giving maximum cytosine deaminase yield was found to consist of 2% glucose as a carbon source and 1% yeast extract and 0.1% peptone as a nitrogen source. Optimal initial pH of the culture broth was pH 8.5 and the enzyme production in the cell usually reached a maximum after 28 hours of cultivation in the 500ml shaking flask containing 100ml broth at $30^{\circ}C$. The endoenzyme production of the used strain was inhibited by inorganic nitrogen, but activated by orgainc nitrogen, yeast extract.

  • PDF

Perceptual cues for /o/ and /u/ in Seoul Korean (서울말 /?/와 /?/의 지각특성)

  • Byun, Hi-Gyung
    • Phonetics and Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.1-14
    • /
    • 2020
  • Previous studies have confirmed that /o/ and /u/ in Seoul Korean are undergoing a merger in the F1/F2 space, especially for female speakers. As a substitute parameter for formants, it is reported that female speakers use phonation (H1-H2) differences to distinguish /o/ from /u/. This study aimed to explore whether H1-H2 values are being used as perceptual cues for /o/-/u/. A perception test was conducted with 35 college students using /o/ and /u/ spoken by 41 females, which overlap considerably in the vowel space. An acoustic analysis of 182 stimuli was also conducted to see if there is any correspondence between production and perception. The identification rate was 89% on average, 86% for /o/, and 91% for /u/. The results confirmed that when /o/ and /u/ cannot be distinguished in the F1/F2 space because they are too close, H1-H2 differences contribute significantly to the separation of the two vowels. However, in perception, this was not the case. H1-H2 values were not significantly involved in the identification process, and the formants (especially F2) were still dominant cues. The study also showed that even though H1-H2 differences are apparent in females' production, males do not use H1-H2 in their production, and both females and males do not use H1-H2 in their perception. It is presumed that H1-H2 has not yet been developed as a perceptual cue for /o/ and /u/.

Virulence factors, antimicrobial resistance patterns, and genetic characteristics of hydrogen sulfide-producing Escherichia coli isolated from swine

  • Park, Hyun-Eui;Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.191-197
    • /
    • 2015
  • Escherichia (E.) coli is commensal bacteria found in the intestine; however, some pathogenic strains cause diseases in animals and humans. Although E. coli does not typically produce hydrogen sulfide ($H_2S$), $H_2S$-producing strains of E. coli have been identified worldwide. The relationship between virulence and $H_2S$ production has not yet been determined. Therefore, characteristics of $H_2S$-producing isolates obtained from swine feces were evaluated including antibiotic resistance patterns, virulence gene expression, and genetic relatedness. Rates of antibiotic resistance of the $H_2S$-producing E. coli varied according to antibiotic. Only the EAST1 gene was detected as a virulence gene in five $H_2S$-producing E. coli strains. Genes conferring $H_2S$ production were not transmissible although the sseA gene encoding 3-mercaptopyruvate sulfurtransferase was detected in all $H_2S$-producing E. coli strains. Sequences of the sseA gene motif CGSVTA around Cys238 were also identical in all $H_2S$- producing E. coli strains. Diverse genetic relatedness among the isolates was observed by pulsed-field gel electrophoresis analysis. These results suggested that $H_2S$-producing E. coli strains were not derived from a specific clone and $H_2S$ production in E. coli is not associated with virulence genes.

Saccharomyces cerevisiae Live Cells Decreased In vitro Methane Production in Intestinal Content of Pigs

  • Gong, Y.L.;Liao, X.D.;Liang, J.B.;Jahromi, M.F.;Wang, H.;Cao, Z.;Wu, Y.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.856-863
    • /
    • 2013
  • An in vitro gas production technique was used in this study to elucidate the effect of two strains of active live yeast on methane ($CH_4$) production in the large intestinal content of pigs to provide an insight to whether active live yeast could suppress $CH_4$ production in the hindgut of pigs. Treatments used in this study include blank (no substrate and no live yeast cells), control (no live yeast cells) and yeast (YST) supplementation groups (supplemented with live yeast cells, YST1 or YST2). The yeast cultures contained $1.8{\times}10^{10}$ cells per g, which were added at the rates of 0.2 mg and 0.4 mg per ml of the fermented inoculum. Large intestinal contents were collected from 2 Duroc${\times}$Landrace${\times}$Yorkshire pigs, mixed with a phosphate buffer (1:2), and incubated anaerobically at $39^{\circ}C$ for 24 h using 500 mg substrate (dry matter (DM) basis). Total gas and $CH_4$ production decreased (p<0.05) with supplementation of yeast. The methane production reduction potential (MRP) was calculated by assuming net methane concentration for the control as 100%. The MRP of yeast 2 was more than 25%. Compared with the control group, in vitro DM digestibility (IVDMD) and total volatile fatty acids (VFA) concentration increased (p<0.05) in 0.4 mg/ml YST1 and 0.2 mg/ml YST2 supplementation groups. Proportion of propionate, butyrate and valerate increased (p<0.05), but that of acetate decreased (p<0.05), which led to a decreased (p<0.05) acetate: propionate (A: P) ratio in the both YST2 treatments and the 0.4 mg/ml YST 1 supplementation groups. Hydrogen recovery decreased (p<0.05) with yeast supplementation. Quantity of methanogenic archaea per milliliter of inoculum decreased (p<0.05) with yeast supplementation after 24 h of incubation. Our results suggest that live yeast cells suppressed in vitro $CH_4$ production when inoculated into the large intestinal contents of pigs and shifted the fermentation pattern to favor propionate production together with an increased population of acetogenic bacteria, both of which serve as a competitive pathway for the available H2 resulting in the reduction of methanogenic archaea.

Inhibitory Effect of Medicinal Plant Extract on Cell Toxicity and Interleukin-8 Production Induced by Helicobacter pylori (Helicobacter pylori에 의한 세포독성 및 Interleukin-8 생성에 미치는 생약혼합물의 영향)

  • Kwon, Dong-Yeul;Gan, Cai;Shon, Yun-Hee;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.2 s.129
    • /
    • pp.124-129
    • /
    • 2002
  • The effects of Helicobacter pylori and medicinal plants extract (Leweifang) on the viability and interleukin(IL)-8 production of gastric epithelial cell were investigated. Cells viability was significantly decreased when they incubated with H. pylori or H. pylori toxin. Co-incubation with Leweifang increased H. pylori or H. pylori toxin-inhibited cell growth in a concentration-dependent manner. The production of IL-8 was greatly increased in H. pylori-infected KATO III gastric epithelial cells in a concentration- and time-dependent manner. The increased production of IL-8 was significantly inhibited by Leweifang $(1,000{\sim}5,000{\mu}g/ml)$. These results indicate that Leweifang has protective effect on H. pylori-inhibited cell growth and H. pylori-induced gastric mucosal cell inflammation by suppressing the production of inflammatory cytokine (IL-8) from gastric epithelial cells.

Photobiological Hydrogen Production by Korean $N_2$-fixing Unicellular Cyanobacterial Strains (국내 연안산 질소고정 단세포 남세균 종주의 광생물학적 수소생산력)

  • Park, Jong-Woo;Myung, Geum-Og;Yih, Won-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2010
  • Photobiological hydrogen production by nitrogen-fixing unicellular cyanobacteria has long been considered to be an environmentally sound and very promising method for the future supply of renewable clean energy. We tried to find out the optimum cell concentration for $H_2$ production in each of the two new Korean nitrogen-fixing unicellular cyanobacterial strains to compare with Synechococcus sp. strain Miami BG043511. The two Korean strains, Cyanothece sp. KNU CB MAL-031 and KNU CB MAL-058, were isolated from Korean west coasts. Cell concentrations up to 17 billion cells $ml^{-1}$ were applied to the tests. High cell concentration over 15 billion cells $ml^{-1}$ resulted in drastically reduced $H_2$ production in all the three strains. The two domestic strains, however, produced 2-3 time more hydrogen than Synechococcus sp. Miami BG043511 at cell concentrations of 5-10 billion cells $ml^{-1}$. At lower cell concentrations than 2 billion cells $ml^{-1}$, MAL-031 exhibited highest $H_2$ production followed by Miami BG043511, with far less production in MAL-058. Present result suggests that Cyanothece sp. MAL-CB031 might be one of the ideal nitrogen-fixing unicellular cyanobacterial strains for the photobiological hydrogen production.

Studies on the Microbial Utilization of Agricultural Wastes (Part 11) Properties of Cellulolytic Enzyme Produced by a Cellulolytic Fungus Trichodrma sp. KI 7-2 and its Application to the Fermented Feed Production (농산폐자원의 미생물학적 이용에 관한 연구(제11보) Trichoderma sp KI 7-2가 생산하는 섬유소분해효소의 성질 및 발효사요에의 응용)

  • Bae, Moo;Lee, Gye-Jun;Tak, Sun-Mi;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1978
  • In order to develop the processes for the production of fermented feed from cellulosic agricultural by-product, cereal straw, by th action of cellulolytic fungus, the properties of the cellulolytic enzyme produced by Trichoderma sp. KI 7-2 was studied. A higher enzyme activity was obtained in the culture added by 1% rice or barley straw powder than in the culture of pure cellulose. The crude enzyme was prepared by precipitating from 20∼60% saturated ammonium sulphate of the culture supernatant. The optimum conditions for the enzyme reaction were temperature of of 50$^{\circ}C$ and pH 4.2. The crude enzyme was static at 50$^{\circ}C$ for two hours and at pH between 4 and 6. These properties were adopted for the fermented feed production, and several production. Thus, several processes of semisolid culture were devicced to up grade tile fermented feed and to develop into the acceptable quality.

  • PDF