• 제목/요약/키워드: $H_{2}$ gas sensor

검색결과 289건 처리시간 0.028초

Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성 (Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties)

  • 김보영;이철순;박준식;이종흔
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서 (High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer)

  • 김상우;박소영;한태희;이세형;한예지;이문석
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

광학적 가스센서 특성 향상을 위한 광 공동 구조의 고찰 (Speculation of Optical Cavity for Improving Optical Gas Sensor's Characteristics)

  • 이승환;박종선
    • 한국가스학회지
    • /
    • 제12권4호
    • /
    • pp.63-68
    • /
    • 2008
  • 본 논문은 적외선 센서의 광 강도 및 효율을 증가시키기 위해 새로운 오목한 반사 벽면(curved mirror surface)과 기존의 수직 반사 벽면(vertical mirror surface)구조와의 모의해석 및 실험 결과에 대해 기술하였다. 모의해석 결과 수직 반사 벽면을 사용했을 때 적외선 센서 필터 표면에 도달하는 광의 분포는 타원 형상으로 적외선 센서 표면에 도달함을 볼 수 있고, 오목한 반사 벽면을 사용하는 경우에는 광이 원형상으로 집광되는 것을 볼 수 있었다. 따라서 초기 평행광의 면적보다 작은 면적으로 집광됨으로 인해 단위면적당 광 강도는 향상되고, 이에 따라 광학적 센서의 출력전압은 향상될 것이라 예측되었다. 이 모의해석을 근간으로 하여 $25^{\circ}C$, 45%R.H.에서 이산화탄소를 0 ppm에서 2500 ppm까지 250 ppm 간격으로 주입시켰을 때, 오목한 반사 벽면의 광 공동이 수직 반사 벽면의 광 공동보다 출력전압이 약 200 mV 증가하였다.

  • PDF

스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구 (Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique)

  • 김일진;한상도;이희덕;왕진석
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.

Sol-Gel 방법을 이용하여 제작된 Pt이 첨가된 Fe2O3 나노 입자의 가스 감지 특성 (Gas Sensing Properties of Pt Doped Fe2O3 Nanoparticles Fabricated by Sol-Gel Method)

  • 장민형;임유성;최승일;박지인;황남경;이문석
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.288-293
    • /
    • 2017
  • $Fe_2O_3$ is one of the most important metal oxides for gas sensing applications because of its low cost and high stability. It is well-known that the shape, size, and phase of $Fe_2O_3$ have a significant influence on its sensing properties. Many reports are available in the literature on the use of $Fe_2O_3$-based sensors for detecting gases, such as $NO_2$, $NH_3$, $H_2S$, $H_2$, and CO. In this paper, we investigated the gas-sensing performance of a Pt-doped ${\varepsilon}$-phase $Fe_2O_3$ gas sensor. Pt-doped $Fe_2O_3$ nanoparticles were synthesized by a Sol-Gel method. Platinum, known as a catalytic material, was used for improving gas-sensing performance in this research. The gas-response measurement at $300^{\circ}C$ showed that $Fe_2O_3$ gas sensors doped with 3%Pt are selective for $NO_2$ gas and exhibita maximum response of 21.23%. The gas-sensing properties proved that $Fe_2O_3$ could be used as a gas sensor for nitrogen dioxide.

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

다공성 Cr2O3 나노육각기둥을 이용한 C2H5OH 센서 (C2H5OH Sensor Using Porous Cr2O3 Nano-Hexaprisms)

  • 정현묵;이종흔
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.451-455
    • /
    • 2012
  • Dense Cr-precursor nano-hexaprisms were prepared by heating the Cr-nitrate aqueous solution containing Hexamethylenetetramine and polyvinylpyrrolidone, which were converted into porous $Cr_2O_3$ nano-hexaprisms containing nanoparticles by heat treatment of Cr-precursors at $600^{\circ}C$ for 2 h in air atmosphere. At the sensor temperature of $300^{\circ}C$, porous $Cr_2O_3$ nano-hexaprism showed the high response ($R_g/R_a$, $R_g$: resistance in gas, $R_a$: resistance in air) to 100 ppm $C_2H_5OH$ ($R_g/R_a=69.8$) with negligible cross-responses to 100 ppm CO and 5 ppm $C_6H_6$. The sensitive and selective detection of $C_2H_5OH$ in porous $Cr_2O_3$ nano-hexaprism were discussed in relation to the morphology of nanostructures.

$\alpha$-Fe$_2$O$_3$ 박막 센서의 환원성 가스감지특성 (Sensing Properties of $\alpha$-Fe$_2$O$_3$ Thin Film Gas Sensor to Reducing Gases)

  • 이은태;장건익;이덕동
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.465-470
    • /
    • 1999
  • Sensing properties of $\alpha$-Fe2O3 thin film to reducing gases such as CHx and CO were systematically examined after deposition on Al2O3 substrate by PECVD(Plasma Enhanced Chemical Vapor Deposition)technique. Microstructure of deposited $\alpha$-Fe2O3 thin film showed the porous island structure. This specimen was annealed at 450, 550, $650^{\circ}C$ to enhance the gas sensing properties and investigated in terms of CO and C4H10 concentration from 500ppm to 3,000 ppm at operating temperature of 35$0^{\circ}C$ The gas sensitivity(%) to C4H10 measured at the operating temperature of 35$0^{\circ}C$ was 98.24 (highest sensitivity) 69.51 to CO and 2% to CH4 respectviely.

  • PDF

Low temperature-operating NiO-CoO butane gas sensors

  • 정동호;최순돈;민봉기
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.303-307
    • /
    • 2008
  • $NiO,\;Cu_2O,\;Mn_2O_3$ and $Cr_2O_3$ as p-type semiconductors were added in CoO with 15 wt.% ethylene glycol binder and measured the butane gas sensing characteristics. The highest sensitivity is obtained for the NiO-CoO sensors. CoO-20 at.% NiO sensor with 15 wt.% ethylene glycol binder sintered at $1100^{\circ}C$ for 24 h exhibits high sensitivity of 90 % to 5000 ppm butane gas at the sensor temperature of $250^{\circ}C$, compared to low sensitivities at the low operating temperature for commercial sensors. Response and recovery times are, respectively, within few seconds and 1min in the static flow system, indicating rapid adsorption and desorption of butane gas on sensor surface even at this low temperature.

다중벽 카본 나노 튜브를 이용한 가스센서의 제작 (The Fabrication of Gas Sensors using MWCNTs)

  • 장경욱;김명호
    • 한국전기전자재료학회논문지
    • /
    • 제22권12호
    • /
    • pp.1089-1094
    • /
    • 2009
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as resistive gas sensors for ethanol ($C_2H_5OH$) detection. Sensor films were fabricated by air spray method for the multi-walled CNTs solution on glass substrates. Sensors were characterized by resistance measurements in the sensing system, in order to find the optimum detection properties for the ethanol gas molecular. The film that was sprayed with the MWCNT dispersion for 60 see, was 300 nm thick. And the electric resistivity is $2{\times}10^{-2}\;{\Omega\cdot}cm$. Also, the sensitivity and the linearity of MWVNT sensor for ethanol gas are 0.389 %/sec and 17.541 %/FS, respectively. The MWCNT film was excellent in the response for the ethanol gas molecules and its reaction speed was very fast, which could be using as ethanol gas sensor. The conductance of the fabricated sensors decreases when the sensors are exposed to ethanol gas.