• 제목/요약/키워드: $H^1-Galerkin$ mixed method

검색결과 4건 처리시간 0.019초

A NEW MIXED FINITE ELEMENT METHOD FOR BURGERS' EQUATION

  • Pany Ambit Kumar;Nataraj Neela;Singh Sangita
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.43-55
    • /
    • 2007
  • In this paper, an $H^1-Galerkin$ mixed finite element method is used to approximate the solution as well as the flux of Burgers' equation. Error estimates have been derived. The results of the numerical experiment show the efficacy of the mixed method and justifies the theoretical results obtained in the paper.

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.

DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC PROBLEMS WITH MIXED BOUNDARY CONDITION

  • Ohm, Mi Ray;Lee, Hyun Yong;Shin, Jun Yong
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.585-598
    • /
    • 2014
  • In this paper we consider the nonlinear parabolic problems with mixed boundary condition. Under comparatively mild conditions of the coefficients related to the problem, we construct the discontinuous Galerkin approximation of the solution to the nonlinear parabolic problem. We discretize spatial variables and construct the finite element spaces consisting of discontinuous piecewise polynomials of which the semidiscrete approximations are composed. We present the proof of the convergence of the semidiscrete approximations in $L^{\infty}(H^1)$ and $L^{\infty}(L^2)$ normed spaces.

FULLY DISCRETE MIXED FINITE ELEMENT METHOD FOR A QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM IN NON-DIVERGENCE FORM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.191-207
    • /
    • 2007
  • Based on a mixed Galerkin approximation, we construct the fully discrete approximations of $U_y$ as well as U to a single-phase quasilinear Stefan problem with a forcing term in non-divergence form. We prove the optimal convergence of approximation to the solution {U, S} and the superconvergence of approximation to $U_y$.