• Title/Summary/Keyword: $H^+/K^$-ATPase

Search Result 237, Processing Time 0.023 seconds

Comparison of Biochemical Characteristics of Myofibrillar Protein from Fresh Water Fish and Sea Water Fish (담수어와 해수어의 근원섬유단백질의 특성 비교)

  • 신완철;송재철;홍상필;김영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.292-298
    • /
    • 1999
  • Myofibril and actomyosin were prepared from red muscle and white muscle of fresh water fish and sea water fish, and their biochemical characteristics and SDS PAGE patterns of myofibril were compared. SDS PAGE analysis showed that electrophoretic patterns of myofibril were similar be tween white muscle and red muscle, while difference of 30kDa component of myofibril was detected between fresh water fish and sea water fish. When myofibril were treated with trypsin, difference in hydrolysis of heavy chain was observed between white muscle and red muscle. In activities of Ca ATPase, Mg ATPase, EDTA ATPase and ATPase activity pH curve, myofibrillar protein from fresh water fish showed higher specific activity than those from sea water fish.

  • PDF

Acid Tolerance of Lactobacillus brevis Isolated from Kimchi (김치에서 분리한 Lactobacillus brevis의 내산성)

  • Lee, Kap-Sang;Shin, Yong-Seo;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1399-1403
    • /
    • 1998
  • We isolated wild lactic acid bacteria from kimchi and identified as Lactobacillus brevis by using API 50 CHL Kit, some morphological and physiological tests. In order to evaluate the acid tolerance of Lactobacillus brevis, its survivals rate, glycolysis assay, membrane permeability, and pH profiles of $H^+-ATPase$ were also determined. When Lactobacillus brevis were incubated in Lactobacilli MRS broth adjusted to various levels of pH for 2 hours, the decreases in its population at pH 4.0 and 3.0 were about 2.61 log cycles/mL and 5.89 log cycles/mL, respectively, but there was no decrease at pH 6.0 and 5.0. Glycolysis by Lactobacillus brevis had optimal pH about 6.5 and glucose degradation was reduced by 50% at a pH of 5.2. $Mg^{++}$ release from Lactobacillus brevis cells in medium with pHs of 4.0 and 3.0 was 24.3 and 71.2% of totals, respectively. The $H^+-ATPase$ of Lactobacillus brevis showed a maximal activity between pH values of approximately 6.5 to 7.0.

  • PDF

Study on the Light-Induced Mitochondrial ATPase$(F_1-ATPase)$ Activated by Iron ion in Mushroom (버섯중 철이온에 활성화된 광감응성 Mitochondrial ATPase에 관한 연구)

  • Min, Tae-Jin;Lee, Mi-Ae;Park, Sang-Shin
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.157-164
    • /
    • 1993
  • The effects of the iron ions on the light-induced mitochondrial $F_1-ATPase$ in Lentinus edodes was studied. This enzyme activity was stimulated by each of the ferric, ferrous and magnesium ion. Especially, the activity of the enzyme by 5.0 mM ferric ion increased up to 107% in comparision with control group(100%). In the presence of magnesium ion, each of ferric and ferrous ion increased the activity of the enzyme, particulary, coexistence of 0.1 mM magnesium and 5.0 mM ferric ion increased the activity up to 270% with magnesium ion dependence. The activity of the enzyme was stimulated up to 268% by 5.0 mM ferric ion in the presence of 0.1 mM magnesium and 0.1 mM ferrous ion. Therefore, the coexistence of ferrous ion did not affect the activity. From the above, we propose that light-induced mitochondrial $F_1-ATPase$ in Lentinus edodes is a $Mg^{2+}{\cdot}Fe^{3+}{\;}F_1-ATPase.$ The optimal pH and temperature for the enzyme were 7.5 and $66^{\circ}C$ respectively.

  • PDF

Human ChlR1 Stimulates Endonuclease Activity of hFen1 Independently of ATPase Activity

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Lee, Do Hee;Cho, Sayeon;Park, Sung Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3005-3008
    • /
    • 2014
  • Human ChlR1 protein (hChlR1), a member of the cohesion establishment factor family, plays an important role in the segregation of sister chromatids for maintenance of genome integrity. We previously reported that hChlR1 interacts with hFen1 and stimulates its nuclease activity on the flap-structured DNA substrate covered with RPA. To elucidate the relationship between hChlR1 and Okazaki fragment processing, the effect of hChlR1 on in vitro nuclease activities of hFen1 and hDna2 was examined. Independent of ATPase activity, hChlR1 stimulated endonuclease activity of hFen1 but not that of hDna2. Our findings suggest that the acceleration of Okazaki fragment processing near cohesions may aid in reducing the size of the replication machinery, thereby facilitating its entry through the cohesin ring.

Changes in the Expressional Levels of Sarcoplasmic Reticulum $Ca^{2+}-regulatory$ Proteins in the Postnatal Developing Rat Heart

  • Lee, Eun-Hee;Park, Soo-Sung;Lee, Jae-Sung;Seo, Young-Ju;Kim, Young-Hoon;Kim, Hae-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • In the present study, the postnatal developmental changes in the expressional levels of cardiac sarcoplasmic reticulum (SR) $Ca^{2+}$ regulatory proteins, i.e. $Ca^{2+}-ATPase,$ phospholamban, and $Ca^{2+}$ release channel, were investigated. Both SR $Ca^{2+}-ATPase$ and phospholamban mRNA levels were about 35% of adult levels at birth and gradually increased to adult levels. Protein levels of both SR $Ca^{2+}-ATPase$ and phospholamban, which were measured by quantitative immunoblotting, were closely correlated with the mRNA levels. The initial rates of $Ca^{2+}$ uptake at birth were about 40% of adult rates and also increased gradually during the myocardial development. Consequently, the relative phospholamban/$Ca^{2+}-ATPase$ ratio was 1 in developmental hearts. $Ca^{2+}$ release channel (ryanodine receptor) mRNA was about $50{\sim}60%$ at birth and increased gradually to adult level throughout the postnatal rat heart development. $^3[H]ryanodine$ binding increased gradually during postnatal myocardial development, which was closely correlated with ryanodine mRNA expression levels during the development except the ryanodine mRNA level at birth. These findings indicate that cardiac SR $Ca^{2+}-ATPase,$ phospholamban, and $Ca^{2+}$ release channel are expressed coordinately, which may be necessary for intracellular $Ca^{2+}$ regulation during the rat heart development.

Characterization of Single Stranded DNA-Dependent ATPase Activities of Deinococcus radiodurans RecA Protein (Deinococcus radiodurans RecA 단백질의 외가닥 DNA-의존성 ATPase 활성 분석)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.250-255
    • /
    • 2007
  • The RecA protein of Deinococcus radiodurans is essential for the extreme radiation resistance of this organism. The central steps involved in recombinational DNA repair require DNA-dependent ATP hydrolysis by recA protein. Key feature of RecA protein-mediated activities is the interactions with ssDNA and dsDNA. The ssDNA is the site where RecA protein filament formation nucleates and where initiation of DNA strand exchange takes place. The effect of sequence heterogeneity of ssDNA was examined in this experiment. The rate of homopolymeric synthetic ssDNA-dependent ATP hydrolysis was constant or nearly so over a broader range of pHs. For poly(dT)-dependent ATP or dATP hydrolysis, rates were generally faster, with a broader optimum between pH 7.0 and 8.0. Activities of RecA protein were affected by the ionic environment. The ATPase activity was shown to have different sensitivity to anionic species. The presence of glutamate seemed to slimulate the hydrolytic activity. Dr RecA protein was shown to require $Mg^{2+}$ ion greater than 2 mM for binding to etheno ssDNA and the binding stoichiometry of 3 nucleotide for RecA protein monomer.

Comparative Biochemical Study on the Myofibrillar Proteins from Porcine Muscle (Porcine Myofibrillar Protein에 대한 비교생화학적 연구)

  • Yang, Ryung;Park, Hyun-Joo;Kim, Young-Ho;Jhin, Hong-Seung;Shin, Wan-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.443-449
    • /
    • 1986
  • In order to investigate the general characteristics of ATPase and ATPase thermostability between porcine white muscle and red muscle, myofibrillar proteins were prepared and compared their physicochemical characteristics. SDS-polyacrylamide gel electrophoretic analyses showed that a protein band of 30,000 daltons was detected noticeably in myofibril from red muscle, but negligibly in myofibril from white muscle. The noticeable differences were found between porcine white muscle and red muscle for the activities of EDTA-ATPase, Ca-ATPase and Mg-ATPase. Myofibrillar proteins from white muscle showed higher thermostability than those from red muscle. Thermodynamic parameters, enthalpy $({\Delta}H^#)$, entropy $({\Delta}S^#)$, etc., showed characteristic variations between porcine white muscle and red muscle.

  • PDF

Transport of Tetraethylammonium in Renal Cortical Endosomes of Cadmium-Intoxicated Rats

  • Park, Hee-Seok;Kim, Kyoung-Ryong;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • Effects of cadmium (Cd) intoxication on renal endosomal accumulation of organic cations $(OC^+)$ were studied in rats using $^{14}C-tetraethylammnium$ (TEA) as a substrate. Cd intoxication was induced by s.c. injections of 2 mg Cd/kg/day for $2{\sim}3$ weeks. Renal cortical endosomes were isolated and the endosomal acidification (acridine orange fluorescence change) and TEA uptake (Millipore filtration technique) were assessed. The TEA uptake was an uphill transport mediated by $H^+/OC^+$ antiporter driven by the pH gradient established by $H^+-ATPase.$ In endosomes of Cd-intoxicated rats, the ATP-dependent TEA uptake was markedly attenuated due to inhibition of endosomal acidification as well as $H^+/TEA$ antiport. In kinetic analysis of $H^+/TEA$ antiport, Vmax was reduced and Km was increased in the Cd group. Inhibition of $H^+/TEA$ antiport was also observed in normal endosomes directly exposed to free Cd (but not Cd-metallothionein complex, CdMt) in vitro. These data suggest that during chronic Cd exposure, free Cd ions liberated by lysosomal degradation of CdMt in proximal tubule cells may impair the endosomal accumulation of $OC^+$ by directly inhibiting the $H^+/OC^+$ antiporter activity and indirectly by reducing the intravesicular acidification, the driving force for $H^+/OC^+$ exchange.

Characterizing Salt Stress Response in a Rice Variety and Its Salt Tolerant Lines Derived from In Vitro Mutagenesis

  • Lee In Sok;Kim Dong Sub;Kang Si Yong;Wi Seung Gon;Jin Hua;Yun PiI-Yong;Lim Yong Pyo;Lee Young Il
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.205-212
    • /
    • 2004
  • The objectives were to compare the salt tolerance levels in the parental rice cultivar, Dongjinbyeo, and induced mutagenesis derived its lines for plant height, MDA, ATPase, POD, and 2-dimensional protein electrophoresis pattern in NaCl-containing hydroponic nutrient solutions. Rice plants isolated from a population of rice (Oryza sativa L. cv. Dongjinbyeo) mutation lines, which were generated in combination with in vitro selection and gamma-ray, exhibited salt tolerance. Line No. 18 had the longest plant, whereas NaCl-sensitive line (No. 25) had the shortest plant. The parent, and the sensitive line showed severe damage from salt stress. Tolerant lines (No. 18, 50) had a lower malonaldehyde (MDA) content than the sensitive one (Dongjinbyeo, No. 25) during salt stress. Several proteins showed significant quantitative variation through 2DE; phosphoribulokinase, peroxidase, oxygen evolving enhancer 1 and the $H^+-ATPase$, which are known to be involved in salt tolerance. The effect of salt on peroxidase and $H^+-ATPase$ activity in the seedlings of two groups with contrasting genotypes of rice was studied. A greater activity was recorded in the tolerant lines as compared to the sensitive ones (P<0.05, Duncan's test). The results indicate that salt tolerant lines expressed more salt stress-inducible proteins associated with salt tolerance than the sensitive lines during salt stress.

Differential Seawater Adaptability in Three Different Sizes of Under-yearling Steelhead Trout

  • Lee, Myeongseok;Lee, Jang-Won
    • Development and Reproduction
    • /
    • v.24 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • Seawater adaptability of steelhead trout increases along with the increase in the size of the fish, independent of parr-smolt transformation. Three 96 h seawater challenge tests were conducted to determine the size at which seawater adaptability of steelhead trout develops. Plasma Na+ and Cl- levels, moisture content, gill Na+/K+ ATPase activity, and mortality during the 96 h after direct transfer to seawater (32 ppt) were determined. Plasma Na+ and Cl- levels in 50 g fish continuously increased during the 96 h after the transfer to seawater (p<0.05), but the levels in 100 and 150 g fish leveled off after 24 h (p<0.05). Both 100 and 150 g size steelhead trout maintained muscle moisture content (%) better than 50 g size fish (p<0.05). Gill Na+/K+ ATPase activity in the 100 g size group increased in a time-dependent manner after transfer to seawater (p<0.05), whereas activity in the 50 and 150 g sizes did not increase (p>0.05), for which a possible explanation was discussed. A mere 2.6% mortality in both the 50 and 150 g size groups was observed. In conclusion, the current results indicate that 50 g size steelhead trout did not show development of a high level of hypoosmoregulatory capacity, whereas fish in the 100 and 150 g size groups showed a high level in our experimental conditions. Therefore, the steelhead trout larger than a 100 g size is recommended for transfer to seawater culture.