• Title/Summary/Keyword: $Green-Zone^{(TM)}$

Search Result 6, Processing Time 0.027 seconds

A Study of Antimicrobial & Antiviral Effect of Natural Product (천연물을 이용한 살균 및 살바이러스 효과에 관한 연구)

  • Ra, Jeong-Chan;Lee, Jong-Eun;Song, Dae-Sub;Kwon, Nam-Hoon;Park, Bong-Kyun;Park, Yong-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.4
    • /
    • pp.183-188
    • /
    • 2003
  • Bactericidal effect of $Green-Zone^{(TM)}$ was observed, when Staphylococcus aureus, E. coli O157:H7, Salmonella typhimurium, S. enteritidis, Listeria monocytogenes, the causative bacteria of food poisoning, Vibrio parahaemolyticus, and Shigella sonnei were treated with the diluted solution of $Green-Zone^{(TM)}$(33.3%~4.1%) for 30min at $20^{\circ}C$. All the bacteria were killed in 30 sec, when 33.3%-diluted $Green-Zone^{(TM)}$ was applied, except for S. aureus. Coronavirus, the same virus with SARS virus taxonomically, was also lilled with the 20%-diluted $Green-Zone^{(TM)}$. Canine parvovirus and Canine distermper virus were also killed even in the organic matter and hard water when treated with $Green-Zone^{(TM)}$. When applied to food such as raw fish, chilled meat, vegetables, $Green-Zone^{(TM)}$ could also decrease the number of microorganism, expecially for E. Coli. From these results, $Green-Zone^{(TM)}$ is thought to be effective for killing virus and bacteria, and also was proved to be safe when applied directrly to food.

Urban Growth of Chuncheon City Observed by Landsat Satellite Images

  • Ahn, Young-Jin;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.411-414
    • /
    • 2005
  • In this study, 8 Landsat(TM/ETM+) satellite images acquired from 1984 to 2002 were used to investigate the growth of Chuncheon city, Kangwon-do, Korea. The images were geocoded and classified using training set collected from field survey. Four land-use types were classified such as urban area, green zone, agricultural land and water body. It also showed rapid increase of urban area in the past two decades from 1166ha in 1984 to 3358ha in 2002. About 2182ha of agricultural land and green zone have been changed to urban area. Agricultural land was newly formed from the green zone.

  • PDF

The extraction method for the best vegetation distribution zone using satellite images in urban area

  • Jo, Myung-Hee;Kim, Sung-Jae;Lee, Kwang-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.908-910
    • /
    • 2003
  • In this paper the extraction method for the best suitable green vegetation area in urban area, Daegu, Korea, was developed using satellite images (1994, 1999, Landsat TM). For this, the GIS overlay analysis of GVI (Green Vegetation Index), SBI (Soil Brightness index), NWI (None-Such wetness Index) was performed to estimate the best suitable green vegetation area. Also, the statistical documents, algorithm and Tasseled-Cap index were used to recognize the change of land cover such as cultivation area, urban area, and damaged area. Through the result of this study, it is possible to monitor the large sized reclamation of land by drainage or damaged area by forest fires. Moreover, information with the change of green vegetation and the status of cultivation by GVI, but also moisture content by percentage by NWI and surface class by SBI can be obtained.

  • PDF

Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town - (신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.

Introduction of the New Evaluation Criteria in the Forest Sector of Environmental Conservation Value Map Using LiDAR (LiDAR를 활용한 국토환경성평가지도 산림부문 신규 평가항목의 도입 가능성 평가)

  • Jeon, Seong-Woo;Hong, Hyun-Jung;Lee, Chong-Soo;Lee, Woo-Kyun;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.20-30
    • /
    • 2007
  • Environmental Conservation Value Assessment Map (ECVAM) is the class map to divide the national land into conservation areas and development areas based on legal and ecological assessment criteria. It contributes to enhancements of the efficiency and the scientificity when framing a policy in various fields including the environment. However, it is impossible to understand the multiphase vegetation structure as data on judging the national forest class in ECVAM are restricted to areal information of Ecological Nature Status, Degree of Green Naturality and Forest Map. This point drops the reliability of ECVAM. Therefore we constructed vegetation information using LiDAR (Light Detection And Raging) technology. We generated Biomass Class Maps as final results of this study, to introduce the new forest assessment criterion in ECVAM that alternates or makes up for existing forest assessment criteria. And then, we compared these with Forest Map and Landsat TM NDVI image. As a result, biomass classes are generally higher than stand age classes and DBH classes of Vegetation Map, and lower than NDVI of Landsat TM image because of the difference of time on data construction. However distributions between these classes are mostly similar. Therefore we estimates that it is possible to apply the biomass item to the new forest assessment criterion of ECVAM. The introduction of the biomass in ECVAM makes it useful to detect the vegetation succession, to adjust the class of the changed zone since the production of Vegetation Map and to rectify the class error of Vegetation Map because variations on tree heights, forest area, gaps between trees, vegetation vitality and so on are acquired as interim findings in process of computing biomass.

Land-Cover Change Detection of Western DMZ and Vicinity using Spectral Mixture Analysis of Landsat Imagery (선형분광혼합화소분석을 이용한 서부지역 DMZ의 토지피복 변화 탐지)

  • Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.158-167
    • /
    • 2006
  • The object of this study is to detect of land-cover change in western DMZ and vicinity. This was performed as a basic study to construct a decision support system for the conservation or a sustainable development of the DMZ and Vicinity near future. DMZ is an is 4km wide and 250km long and it's one of the most highly fortified boundaries in the world and also a unique thin green line. Environmentalists want to declare the DMZ as a natural reserve and a biodiversity zone, but nowadays through the strengthening of the inter-Korean economic cooperation, some developers are trying to construct a new-town or an industrial complex inside of the DMZ. This study investigates the current environmental conditions, especially deforestation of the western DMZ adopting remote sensing and GIS techniques. The Land-covers were identified through the linear spectvral mixture analysis(LSMA) which was used to handle the spectral mixture problem of low spatial resolution imagery of Landsat TM and ETM+ imagery. To analyze quantitative and spatial change of vegetation-cover in western DMZ, GIS overlay method was used. In LSMA, to develop high-quality fraction images, three endmembers of green vegetation(GV), soil, water were driven from pure features in the imagery. Through 15 years, from 1987 to 2002, forest of western DMZ and vicinity was devastated and changed to urban, farmland or barren land. Northern part of western DMZ and vicinity was more deforested than that of southern part. ($52.37km^2$ of North Korean forest and $39.04km^2$ of South Korean were change to other land-covers.) In case of North Korean part, forest changed to barren land and farmland and in South Korean part, forest changed to farmland and urban area. Especially, In North Korean part of DMZ and vicinity, $56.15km^2$ of farmland changed to barren land through 15 years, which showed the failure of the 'Darakbat' (terrace filed) project which is one of food increase projects in North Korea.

  • PDF