• Title/Summary/Keyword: $GF(2^m)$ Multiplication

Search Result 117, Processing Time 0.028 seconds

Design of a Small-Area Finite-Field Multiplier with only Latches (래치구조의 저면적 유한체 승산기 설계)

  • Lee, Kwang-Youb
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.9-15
    • /
    • 2003
  • An optimized finite-field multiplier is proposed for encryption and error correction devices. It is based on a modified Linear Feedback Shift Register (LFSR) which has lower power consumption and smaller area than prior LFSR-based finite-field multipliers. The proposed finite field multiplier for GF(2n) multiplies two n-bit polynomials using polynomial basis to produce $z(x)=a(x)^*b(x)$ mod p(x), where p(x) is a irreducible polynomial for the Galois Field. The LFSR based on a serial multiplication structure has less complex circuits than array structures and hybrid structures. It is efficient to use the LFSR structure for systems with limited area and power consumption. The prior finite-field multipliers need 3${\cdot}$m flip-flops for multiplication of m-bit polynomials. Consequently, they need 6${\cdot}$m latches because one flip-flop consists of two latches. The proposed finite-field multiplier requires only 4${\cdot}$m latches for m-bit multiplication, which results in 1/3 smaller area than the prior finite-field multipliers. As a result, it can be used effectively in encryption and error correction devices with low-power consumption and small area.

  • PDF

Efficient Semi-systolic Montgomery multiplier over GF(2m)

  • Keewon, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Finite field arithmetic operations play an important role in a variety of applications, including modern cryptography and error correction codes. In this paper, we propose an efficient multiplication algorithm over finite fields using the Montgomery multiplication algorithm. Existing multipliers can be implemented using AND and XOR gates, but in order to reduce time and space complexity, we propose an algorithm using NAND and NOR gates. Also, based on the proposed algorithm, an efficient semi-systolic finite field multiplier with low space and low latency is proposed. The proposed multiplier has a lower area-time complexity than the existing multipliers. Compared to existing structures, the proposed multiplier over finite fields reduces space-time complexity by about 71%, 66%, and 33% compared to the multipliers of Chiou et al., Huang et al., and Kim-Jeon. As a result, our multiplier is proper for VLSI and can be successfully implemented as an essential module for various applications.

Design of an Efficient Bit-Parallel Multiplier using Trinomials (삼항 다항식을 이용한 효율적인 비트-병렬 구조의 곱셈기)

  • 정석원;이선옥;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.179-187
    • /
    • 2003
  • Recently efficient implementation of finite field operation has received a lot of attention. Among the GF($2^m$) arithmetic operations, multiplication process is the most basic and a critical operation that determines speed-up hardware. We propose a hardware architecture using Mastrovito method to reduce processing time. Existing Mastrovito multipliers using the special generating trinomial p($\chi$)=$x^m$+$x^n$+1 require $m^2$-1 XOR gates and $m^2$ AND gates. The proposed multiplier needs $m^2$ AND gates and $m^2$+($n^2$-3n)/2 XOR gates that depend on the intermediate term xn. Time complexity of existing multipliers is $T_A$+( (m-2)/(m-n) +1+ log$_2$(m) ) $T_X$ and that of proposed method is $T_X$+(1+ log$_2$(m-1)+ n/2 ) )$T_X$. The proposed architecture is efficient for the extension degree m suggested as standards: SEC2, ANSI X9.63. In average, XOR space complexity is increased to 1.18% but time complexity is reduced 9.036%.

Parallelized Architecture of Serial Finite Field Multipliers for Fast Computation (유한체 상에서 고속 연산을 위한 직렬 곱셈기의 병렬화 구조)

  • Cho, Yong-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Hence, the design of efficient dedicated finite field multiplier architectures can lead to dramatic improvement on the overall system performance. In this paper, a new bit serial structure for a multiplier with low latency in Galois field is presented. To speed up multiplication processing, we divide the product polynomial into several parts and then process them in parallel. The proposed multiplier operates standard basis of $GF(2^m)$ and is faster than bit serial ones but with lower area complexity than bit parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.

Implementation of Ternary Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Jang, Sung-Won;Park, Byung-Ho;Park, Sang-Joo;Han, Young-Hwan;Seong, Hyeon-Kyeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1760-1762
    • /
    • 2010
  • 본 논문에서 3치가산기와 승산기(multiplier)는 전류모드 CMOS에 의해서 구현된다. 첫째, 3치 T-gate를 집적회로 설계의 유효 가용성을 갖고 있는 전류모드 CMOS를 이용하여 구현한다. 둘째, 3치 T-gates를 이용해 회로가 유한체 GF (3)에 대하여 2변수 3치 가산표 (2-variable ternary addition table) 및 구구표 (multiplication table)가 실현되도록 구현한다. 마지막으로, 이러한 동작 회로들은 1.5 CMOS 표준 기술과 $15{\mu}A$ 단위전류(unit current) 및 3.3V 소스 전압 (VDD voltage)에 의해 활성화 된다. 활성화 결과는 만족할 만한 전류 특성을 나타냈다. 전류 모드 CMOS에 의하여 실행되는 3치가산기 및 승산기는 단순하며 와이어 라우팅(wire routing)에 대하여 정규적이고, 또한 셀 배열 (cell array)과 함께 모듈성 (modularity)의 특성을 갖고 있다.

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

CELL CULTURE STUDIES OF MAREK'S DISEASE ETIOLOGICAL AGENT (조직배양(組織培養)에 의한 Marek 병(病) 병원체(病原體)의 연구(硏究))

  • Kim, Uh-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.9 no.1
    • /
    • pp.23-62
    • /
    • 1969
  • Throughout the studies the following experimental results were obtained and are summarized: 1. Multiplication of agents in primary cell cultures of both GF classical and CR-64 acute strain of Marek's disease infected chicken kidneys was accompanied by the formation of distinct transformed cell foci. This characteristic nature of cell transformation was passaged regularly by addition of dispersed cell from infected cultures to normal chicken kidney cell cultures, and also transferred was the nature of cell transformation to normal chick-embryo liver and neuroglial cell cultures. No cytopathic changes were noticed in inoculated chick-embryo fibroblast cultures. 2. The same cytopathic effects were noticed in normal kidney cell monolayers after the inoculation of whole blood and huffy coat cells derived from both forms of Marek's disease infected chickens. In these cases, however, the number of transformed cell foci appearing was far less than that of uninoculated monolayers prepared directly from the kidneys of Marek's disease infected chickens. 3. The change in cell culture IS regarded as a specific cell transformation focus induced by an oncogenic virus rather than it plaque in slowly progressing cytopathic effect by non-oncogenic viruses, and it is quite similar to RSV focus in chick-embryo fibroblasts in many respects. 4. The infective agent (cell transformable) were extremely cell-associated and could not be separated in an infective state from cells under the experimental conditions. 5. The focus assay of these agents was valid as shown by the high degree of linear correlation (r=0.97 and 0.99) between the relative infected cell concentration (in inoculum) and the transformed cell foci counted. 6. No differences were observed between the GF classical strain and the CR-64 acute strain of Marek's disease as far as cell culture behavior. 7. Characterization of the isolates by physical and chemical treatments, development of internuclear inclusions in Infected cells, and nucleic acid typing by differential stainings and cytochemical treatments indicated that the natures of these cell transformation agents closely resemble to those described fer the group B herpes viruses. 8. Susceptible chicks inoculated with infected kidney tissue culture cells developed specific lesions of Marek's disease, and in a case of prolonged observation after inoculation (5 weeks) the birds developed clinical symptoms and gross lesions of Marek's disease. Kidney cell cultures prepared from those inoculated birds and sacrificed showed a superior recovery of cell transformation property by formation of distinct foci. 9. Electron microscopic study of infected kidney culture cells (GF agent) by negative staining technique revealed virus particles furnishing the properties of herpes viruses. The particle was measured about $100m{\mu}$ and, so far, no herpes virus envelop has been seen from these preparations. 10. No relationship of both isolates to avian leukosis/sarcoma group viruses and PPLO was observed.

  • PDF