• Title/Summary/Keyword: $Fe_3O_4$ nanowires

Search Result 4, Processing Time 0.022 seconds

Fabrication and Properties of Fe3O4 Nanowires Using Pulsed Laser Deposition (Pulsed Laser Deposition 방법으로 증착된 Fe3O4 나노선의 성장과 특성)

  • Yun, Jong-Gu;Kim, Jin-A;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.64-67
    • /
    • 2013
  • $Fe_3O_4$(magnetite) having half metallic property attracts great attention material with high curie temperature in spintronics. $Fe_3O_4$ thin films and nanowires were grown onto c-$Al_2O_3$(0001) at various substrate temperatures. $Fe_3O_4$ films deposited from 300 to $600^{\circ}C$ are influenced by thermal stress induced from mismatch of thermal expansion coefficient between $Fe_3O_4$ and $Al_2O_3$ (0001) substrate. The $Fe_3O_4$ nanowires grown at $640^{\circ}C$ showed a diameter of 130 nm and a length of $2-10{\mu}m$. The nanowire arrays fabricated by pulsed laser deposition technique have high coercivity($H_c$) of 608 Oe and Squareness($M_r/M_s$) of 0.68 in perpendicular direction.

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell (미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산)

  • Lee, Yu-Jin;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).