• 제목/요약/키워드: $Fe_3AlC$

검색결과 655건 처리시간 0.03초

용탕단조법에 의한 금속간화합물/Al기지 복합재료 개발을 위한 기초연구 (A Study on Fabrication of Intermetallic Compounds/Al Matrix Composites by Squeeze Casting)

  • 최답천;이경구;이연오
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.419-428
    • /
    • 1994
  • The microvickers hardness and microstructure of Fe/Al composite fabricated by squeeze casting method were investigated. Pure Al and A356 Alloy were chosen for the matrix composition and Fe preform was fabricated with sintered Fe powder at $1000^{\circ}C$ for 30min. under hydrogen atmosphere. Experimental variables were included preheating temperature, melt temperature and applied pressure. Analysing the experimental result concerning microstructure of fabricated composites, Fe/A356 composite showed improved microstructure at $600^{\circ}C$ melt temperature and $350^{\circ}C$ preform preheating temperature in Fe distribution and Infiltrated distance. The results of EDX and XRD showed that the interfacial zones of Fe/Al composite were composed of non-equilibrium intermetallic layers[$(Al_5Fe_2)_x$, $Al_{13}Fe_4m\;Fe_3Al$, FeAl]. The microvickers hardness of Fe/Al composite showed higher value than Fe/A356 composite in interface.

  • PDF

Rod Milling과 Chemical Leaching에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 결정화 및 자기적 특성 (Crystallization and Magnetic Properties of Non-Equilibrium Al(Fe-Cu) Alloy Powders Produced by Rod Milling and Chemical Leaching)

  • 김현구
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.486-492
    • /
    • 2004
  • We report the crystallization and magnetic properties of non-equilibrium $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}(x=0.25, 0.50, 0.75)$ alloy powders produced by rod-milling as well as by new chemical leaching. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h or 500 h milling, only the broad peaks of nano bcc crystalline phases were detected in the XRD patterns. The crystallite size, the peak and the crystallization temperatures increased with increasing Fe. After being annealed at $600{^\circ}C$ for 1 h for as-milled alloy powders, the peaks of bcc $AlCu_{4}\;and\;Al_{13}Cu_{4}Fe_{3}\;for\;x=0.25,\;bcc\;AlCu_{4}\;and\;Al_{5}Fe_{2}\;for\;x=0.50,\;and\;Al_{5}Fe_{2},\;and\;Al_{0.5}Fe_{0.5}\;for\;x=0.75$ are observed. After being annealed at $500{^\circ}\;and\;600{^\circ}C$for 1 h for leached specimens, these non-equi-librium phases transformed into fcc Cu and $CuFe_{2}O_{4}$phases for the x=0.25 specimen, and into bcc ${\alpha}-Fe,\;fcc\;Cu,\;and\;CuFe_{2}O_{4}$ phases for both the x=0.50 and the x=0.75 specimens. The saturation magnetization decreased with increasing milling time for $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}$ alloy powders. On cooling the leached specimens from $800{\~}850^{\circ}C$,\;the magnetization first sharply increase at about $491.4{\circ}C,\;745{\circ}C,\;and\;750.0{\circ}C$ for x=0.25, x=0.50, and x=0.75 specimens, repectively.

Corrosion of AI-Fe Coatings for Wet-Seal Area in Molten Carbonate Fuel Cells

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.98-101
    • /
    • 2004
  • The corrosion behavior of Al-Fe coatings was studied in the wet-seal atmosphere of molten carbonate fuel cells (MCFC). Fe-8Al, Fe-16Al, Fe-25Al, Fe-36Al, and Fe-70Al (in at.%) specimens were tested in Li/K carbonate at $650^{\circ}C$ by a single cell test and an immersion test. In general, the corrosion resistance of the Al-Fe coatings was enhanced due to the formation of a protective $LiAlO_2$ layer. However, when the Al-Fe coatings didn't have sufficient content of aluminum enough for maintaining the protective layer, the corrosion resistance of the Al-Fe coatings was severely degraded by the growth of non-protective scales like $LiAlO_2$. The test results revealed that the aluminum contents in the coatings should be higher than 25 at.% in order to form and maintain the protective $LiAlO_2$ layers.

급랭응고한 Al-Fe 합금계 리본을 고온에 노출시킴에 따른 미세석출물의 성장거동 (Coarsening Behavior of Fine Precipitates in Rapidly Quenched Al-Fe Based Alloy Ribbons by In-situ Heat Treatment)

  • 백남익
    • 한국주조공학회지
    • /
    • 제15권3호
    • /
    • pp.252-261
    • /
    • 1995
  • The purposes of this study were to investigate the microstructural changes in alloy ribbons of Al-Fe-Mo-Si quarternary system at $450{\sim}500^{\circ}C$, and to study the coarsening mechanism of fine precipitates. Using the hot stage in TEM, in situ microstructural changes in Al-4Fe-0.5Mo-1.5Si alloy ribbon and Al-8Fe-2Mo-1.5Si alloy ribbon have been examined successively up to 60 hours at $450^{\circ}C$ and $500^{\circ}C$. Cell structure in zone B of Al-4Fe-0.5Mo-1.5Si alloy ribbon was observed to collapse even in 10 minutes by in-situ heating at $450^{\circ}C$ and the size of precipitates in zone B increased twice in 60 hours. The precipitates in zone A of Al-4Fe-0.5Mo-1.5Si alloy ribbon showed slower coarsening rate than those in zone B by in-situ heating at $450^{\circ}C$. The precipitates in zone A of Al-8Fe-2Mo-1.5Si alloy ribbon increased 50% by in-situ heating at $500^{\circ}C$ in 50 hours compared to the initial precipitates while any microstructual change in zone B was not observed by in-situ heating at $500^{\circ}C$ up to 50 hours. Only the precipitates in zone A of Al-4Fe-0.5Mo-1.5Si alloy ribbon satisfied $r^3{\propto}t$ relationship of coarsening mechanism.

  • PDF

Fe-25at%Al합금의 $DO_3{\rightleftharpoons}B2$ 천이온도, 미세조직 및 부식거동에 미치는 B, Si의 영향 (Effects of B and Si Additions on the $DO_3{\rightleftharpoons}B2$ Transition Temperature, Microstructure and Corrosion Behavior of Fe-25at%Al Alloys)

  • 최답천;황금연
    • 한국주조공학회지
    • /
    • 제12권2호
    • /
    • pp.131-138
    • /
    • 1992
  • The effects of B additions, alone or in combination with Si, on the microstructure, $DO_3{\rightleftharpoons}B2$ transition temperature($T_c$) and corrosion behavior of Fe-25at%Al alloys were investigated. The raw materials were arc-melted in vacuum and then subjected to the following heat treatments to maximize the $DO_3$ order : homogenized at $1000^{\circ}C$ for 48hrs, slowly cooled to $500^{\circ}C$, and held at that temperature for 24hours. Results showed that the B addition to Fe-25at%Al alloys does indeed refine the grain and change from intergranular to transgranular fracture mode at room temperature, indicating a strengthening of grain boundaries. The Fe-25at% Al-1at% B-3at% Si alloy showed the highest $T_c$(${\Delta}T_c=150^{\circ}C$) in this work. However, the effectiveness of Si in raising $T_c$ decreased with more than 5at% Si additions combined with B. Since the preferential corrosion occurs at the precipitates, the corrosion resistance decreased due to the increased amount of precipitates with alloying additions.

  • PDF

Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites

  • Qian, Hui-Dong;Si, Ping-Zhan;Lim, Jung Tae;Kim, Jong-Woo;Park, Jihoon;Choi, Chul-Jin
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1703-1707
    • /
    • 2018
  • Ferromagnetic ${\tau}-phase$ $Mn_{54}Al_{46}C_{2.44}$ particles were synthesized, and its composites with commercial $Sm_2Fe_{17}N_3$ and synthesized $Fe_{65}Co_{35}$ powders were fabricated. Smaller grain size than the single domain size of the $Mn_{54}Al_{46}C_{2.44}$ without obvious grain boundaries and secondary phases is the origin for the low intrinsic coercivity. It was confirmed that the magnetic properties of the $Mn_{54}Al_{46}C_{2.44}$ can be enhanced by magnetic exchange coupling with the hard magnetic $Sm_2Fe_{17}N_3$ and soft magnetic $Fe_{65}Co_{35}$. The high degrees of the exchange coupling were verified by calculating first derivative curves. Thermo-magnetic stabilities of the composites from 100 to 400 K were measured and compared. It was demonstrated that the $Mn_{54}Al_{46}C_{2.44}$ based composites containing $Sm_2Fe_{17}N_3$ and $Fe_{65}Co_{35}$ could be promising candidates for future permanent magnetic materials with the proper control of purity, magnetic properties, etc.

Mischmetal-FeB-(Co,Ti,Al) 영구자석 (Mischmetal-FeB-(Co,Ti,Al) Permanent Magnets)

  • 고관영;윤석길;김세환
    • 한국재료학회지
    • /
    • 제9권10호
    • /
    • pp.1037-1040
    • /
    • 1999
  • 열간압축 및 다이업셋한 Mischmetal-FeB-(C0,Ti,Al) 영구자석의 자기적 특성과 미세조직을 시료진동형 자력계, 투과전자 현미경, 주사전자 현미경, X-선 회절기를 이용하여 조사하였다. $\textrm{(MM)}_{12.5}\textrm{Fe}_{71.9}\textrm{Co}_{5.0}\textrm{Al}_{2.0}\textrm{B}_{8.6}$조성의 열간압축 자석은 $\textrm{H}_{c}$=4.27 kOe, $\textrm{B}_{r}$=4.75 kG, $\textrm{(BH)}_{max}$=3.82 MGOe의 특성을 보였다. 다이업셋 자석은 $\textrm{H}_{c}$=3.10 kOe, $\textrm{B}_{r}$=5.58 kG, $\textrm{(BH)}_{max}$=5.34 MGOe의 특성을 나타냈다. $\textrm{(MM)}_{12.5}\textrm{Fe}_{77.9}\textrm{Ti}_{1.0}\textrm{B}_{8.6}$ 조성의 경우, 열간압축 자석은 $\textrm{H}_{c}$=3.75 kOe, $\textrm{B}_{r}$=4.64 kG, $\textrm{(BH)}_{max}$=2.78 MGOe, 다이업셋 자석은 $\textrm{H}_{c}$=3.29 kOe, $\textrm{B}_{r}$=5.01 kG, $\textrm{(BH)}_{max}$=3.54 MGOe의 특성을 보였다. X-선 회절 및 투과전자 현미경 조사결과에 의하면, 다이업셋 자석에서 c축이 다이업셋 방향으로 놓이는 결정이방성이 나타나며, 이는 다이어셋 자석의 에너지적의 증가와 관련이 있는 것으로 보인다. Co의 Fe에 대한 일부 치환은 열간압축자석의 자기이방성을 증가시키는 것으로 나타났다.

  • PDF

Al-8wt.%Fe 분말의 기계적 합금화 거동과 열적안정성에 미치는 Ce의 영향 (Effects of Ce on the Mechanical Alloying Behavior and Thermal Stability of Al-8wt.%Fe Powder)

  • 오광진
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.4-14
    • /
    • 1994
  • The effects of Ce on the mechanical alloying behavior and the thermal stability of Al-8wt.%Fe were investigated. The steady states of Al-8wt.%Fe and Al-8wt.%Fe-4wt.%Ce powders with 1.5 wt.% stearic acid as a process control agent were reached after mechanical alloying for 1000 minuties and 1300 minuties respectively at the conditions of the impeller revolving velocity of 300 rpm and the ball to powder input ratio of 50 : 1. The hardness of Al-8wt.%Fe specimen hot extruded and isothermally aged at various temperatures for up to 1000 hours decreased rapidly at 50$0^{\circ}C$ and its high temperature ultimate tensile strength began to decrease at 40$0^{\circ}C$ with increasing aging time. The decrease in the hardness and ultimate tensile strength of the specimen were reduced substantially by addition of Ce. It was thought to be due to the formation of thermally stable A14Ce and All3Fe3Ce intermetallic compounds.

  • PDF

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • 제6권3호
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

Al2O3 + (Fe2O3, Al, Cr and Si) 소결 복합재료의 고온 부식 특성 (High-temperature corrosion properties of Al2O3 + (Fe2O3, Al, Cr and Si) mixed sintering materials)

  • 김민정;원성빈;봉성준;이동복;손인진
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.170-171
    • /
    • 2012
  • $Fe_2O_3$, Al, Cr과 Si 분말을 고 에너지 볼 밀링해서 나노분말을 제조한 후 고주파유도 가열 활성 연소합성 장치로 1분 이내의 짧은 시간에 합성 및 소결한 $Al_2O_3+4.65(Fe_{0.43}Cr_{0.17}Al_{0.323}Si_{0.077})$, $Al_2O_3$ + 5.33 ($Fe_{0.375}Cr_{0.11}Al_{0.3}Si_{0.075}$), $Al_2O_3$ + 6.15 ($Fe_{0.325}Cr_{0.155}Al_{0.448}Si_{0.072}$), $Al_2O_3$ + 3.3 ($Fe_{0.6}Cr_{0.3}Al_{0.6}$) 소결체 시편을 $700^{\circ}C$의 온도에서 100시간 동안 공기 중에서 산화 및 $N_2-H_20-H_2S$ 혼합 가스 내에서 황화 부식을 실시하였다. 그 결과 산화 및 황화 부식 후에 ${\alpha}-Al_2O_3$가 표면에 생성되어 보호 피막으로 작용하여 우수한 내식성을 보였다.

  • PDF