• Title/Summary/Keyword: $FeSi_2$

Search Result 1,707, Processing Time 0.025 seconds

Assessment of Nutritional Components, Carotenoid Content and Physiological Activity of Maize Hybrid for Grain 'Kangilok' (강일옥 옥수수의 영양성분, 카로티노이드 함량분석 및 생리활성 평가)

  • Lee, Ki Yeon;Kim, Jai Eun;Hong, Soo Young;Kim, Tae Hee;Park, A-Reum;Noh, Hee Sun;Kim, Si Chang;Park, Jong Yeol;Ahn, Mun Seob;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.513-520
    • /
    • 2017
  • This study was performed to provide basic data of 'Kangilok'. The objective of this study was to investigate worth of 4 parts of maize hybrid for grain, 'Kangilok' for functional foods. The 4 parts are kernels, dehulled kernels, skin of kernels and cobs of 'Kangilok'. We evaluated moisture, crude ash, crude lipid, crude protein, crude fiber and mineral content of 'Kangilok'. The moisture of kernels, dehulled kernels, skin of kernels and cobs of 'Kangilok' were 11.27%, 12.40%, 9.45%, 8.85% and the crude ash were 1.26%, 0.73%, 3.19%, 1.42%. Each of the crude lipid were 3.84%, 2.69%, 8.59%, 0.46% and the crude protein were 9.40%, 9.96%, 12.10%, 2.80%. The crude fiber of kernels, dehulled kernels, skin of kernels and cobs of 'Kangilok' were 2.24%, 0.92%, 7.07%, and 33.51%. Among the mineral contents, Ca and K content of cobs were highest by 4.84 mg/100 g, 114.33 mg/100 g and Fe, Mn contents of skin of kernels were highest by 5.30 mg/100 g, 2.64 mg/100 g. Mg content of kernels was the highest by 27.42 mg/100 g. P content of kernels, dehulled kernels, skin of kernels and cobs were 1.20%, 0.96%, 2.41%, and 0.19%. It was performed test on anti-oxidative, anti-inflammatory activities of 60% ethanol extract from 4 parts of Kangilok. The anti-oxidative effect was measured by DPPH and ABTS radical scavenging activity. As a results, DPPH radical scavenging activity (10 mg/mL) was 72.59%~93.05% and ABTS radical scavenging activity (10 mg/mL) was 48.17%~79.88%. The anti-inflammatory effect was measured by ability to inhibit production nitric oxide (NO) in RAW264.7 cell. As a result, all the extract of 4 parts were showed significantly inhibitory effect on NO production. Carotenoid contents quantified by using HPLC. ${\beta}$-Carotene of carotenoid was not analyzed in all the sample. Lutein and zeaxantin ware analyzed in kernels and skin of kernels.

The Demand Analysis of Water Purification of Groundwater for the Horticultural Water Supply (시설원예 용수 공급을 위한 지하수 정수 요구도 분석)

  • Lee, Taeseok;Son, Jinkwan;Jin, Yujeong;Lee, Donggwan;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.510-523
    • /
    • 2020
  • This study analyzed groundwater quality in hydroponic cultivation facilities. Through this study, the possibility of groundwater use was evaluated according to the quality of the groundwater for hydroponic cultivation facilities. Good groundwater quality, on average, is pH 6.61, EC 0.27 dS/m, NO3-N 7.64 mg/L, NH4+-N 0.80 mg/L, PO4-P 0.09 mg/L, K+ 6.26 mg/L, Ca2+ 18.57 mg/L, Mg2+ 4.38 mg/L, Na+ 20.85 mg/L, etc. All of these satisfy the water quality standard for raw water in nutrient cultivation. But in the case of farmers experiencing problems with groundwater quality, most of the items exceeded the water quality standard. As a result of the analysis, it was judged that purifying groundwater of unsuitable quality for crop cultivation, and using it as raw water, was effective in terms of water quality and soil purification. If an agricultural water purification system is constructed based on the results of this study, it is judged that the design will be easy because the items to be treated can be estimated. If a purification system is established, it can use groundwater directly in the facility and for horticulture. These study results will be available for use in sustainable agriculture and environments.

Andic Properties of Major Soils in Cheju Island -III. Conditions for Formation of Allophane (제주도(濟州島) 대표토양(代表土壤)의 Andic 특성(特性)에 관한 연구(硏究) -III. Allophane 생성조건(生成條件))

  • Song, Kwan-Cheol;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The conditions for formation of allophane in volcanic ash soils in Cheju Island were investigated. Soils of toposequence distributed along the sourthern slope of Mt. Halla, and the major soil groups such as dark brown soils, very dark brown soils, black soils, and brown forest soils were colleted and analyzed for Al, Fe and Si extracted with solutions of pyrophosphate and oxalate. Mean annual temperature decreased $0.8^{\circ}C$ and mean annual precipitation increased 110mm with increase elevation of 100m. Organic carbon content increased and soil pH decreased with elevation, and the formation of allophane in soils formed a climosequence. Dark brown soils widely distributed in the northern and western coastal areas, where the mean annual precipitation ranged 1,240~1,420mm and the evaporation ranged 1,290~1,320mm, contained only small amounts of allophane and Al-humus complexes. For other soils, organic carbon content, pyrophosphate extractable Al, and $Al_p/Al_o$ were inversely correlated with $pH(CaCl_2)$. Allophane content showed close relationships wlth $pH(CaCl_2)$, and inverse relationships with organic carbon content and $Al_p/Al_o$.

  • PDF

Behaviors of Arsenic in Paddy Soils and Effects of Absorbed Arsenic on Physiological and Ecological Characteristics of Rice Plant lll. Effect of Water Management on As Uptake and the Growth of Rice Plant at As Added Soil (토양중(土壤中) 비소(砒素)의 행동(行動)과 수도(水稻)의 비소흡수(砒素吸收)에 의(依)한 피해생리(被害生理) 생태(生態)에 관(關)한 연구(硏究);Ⅲ.물관리(管理)가 수도의 비소흡수(砒素吸收) 및 생육(生育)에 미치는 영향(影響))

  • Lee, Min-Hyo;Lim, Soo-Kill-H
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1987
  • A pot experiment was conducted to find out the effect of water management on the growth and uptake of arsenic and inorganic nutrients of rice plant at As added soil. The arsenic were added to soil at the levels of As 0, 10, 50, 100 and 150 ppm, respectively. Water management was done with two ways: intermittent irrigation from ten days after transplanting, and continuous submersion until harvest. Higher soil As levels increased As content in plant but reduced growth rate. Aresenic content in plant was considerably reduced with intermittent irrigation compared to continuous submersion. Rice growth showed also same trend. With increasing As levels in soil, N content in plant was increased but P, K, Ca, Mg, $SiO_2$, Fe and Mn content in plant were tend to be decreased. These inorganic nutrients in plant were also much absorbed in continuous submersion compared to intermittent irrigation. Soil pH was slightly increased with increasing As levels in soil while soil Eh has no relationship with soil As levels. On the other hand, soil pH was higher in the treatment of continuous submersion than that of intermittent irrigation but soil Eh showed reverse trend. With increasing As levels in soil, water soluble-As and Ca-As fractions in soil tend to be increased with continuous submersion, but these fractions has no tendency with intermittant irrigation.

  • PDF

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF