• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,669, Processing Time 0.038 seconds

A Novel Iron(III) Complex with a Tridentate Ligand as a Functional Model for Catechol Dioxygenases: Properties and Reactivity of [Fe(BBA)DBC]$ClO_4$

  • Yun, Seong Ho;Lee, Ho Jin;Lee, Gang Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.923-928
    • /
    • 2000
  • [FeIII(BBA)DBC]ClO4 as a new functional model for catechol dioxygenases has been synthesized, where BBA is a bis(benzimidazolyl-2-methyl)amine and DBC is a 3,5-di-tert-butylcatecholate dianion.The BBA complex has a structuralfeature that iron cent er has a five-coordinate geometry similar to that of catechol dioxygenase-substrate complex.The BBA complex exhibits strong absorptionbands at 560 and 820 nm in CH3CN which are assigned to catecholate to Fe(III) charge transfer transitions. It also exhibits EPR signals at g = 9.3 and 4.3 which are typical values for the high-spin FeIII (S = 5/2) complex with rhombicsymmetry. Interestingly, the BBA complex reacts with O2 within an hour to afford intradiol cleavage (35%) and extradiol cleavage (60%) products. Surprisingly, a green color intermediate is observed during the oxygenation process of the BBA com-plex in CH3CN. This green intermediate shows a broad isotropic EPR signal at g = 2.0. Based on the variable temperature EPR study, this isotropic signalmight be originated from the [Fe(III)-peroxo-catecholate] species havinglow-spin FeIII center, not from the simple organic radical. Consequently,it allows O2 to bind to iron cen-ter forming the Fe(III)-superoxide species that converts to the Fe(III)-peroxide intermediate. These present data can lead us tosuggest that the oxygen activation mechanism take place for the oxidative cleavingcatechols of the five-coordinate model systems for catechol dioxygenases.

Electrochemistry and Direct Conductivity Determination of Thin Films of Prussian Blue

  • 문성배;김영인
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.511-515
    • /
    • 1995
  • Since much studies have been performed concerning the electrochemical behaviors and the practical applications of PB based devices, little has yet reported to investigate the best condition for the preparation for PB thin films. As considered some factors(peak shape, peak current, and peak separation) from the i-V curves, the optimal condition in the film growth were investigated under various immersion solutions. An electron-transfer processes of Fe2+/Fe3+ and Fe(CN)63-/4- redox couples were considered by measuring the observed currents as a function of the rotation velocity. The standard heterogeneous electron-transfer rates for these films and bare Au disc electrode in 10-3 M Fe2+/Fe3+ solution, applied at +0.65 V vs. SCE, were 6.14 × 10-3 and 7.78 × 10-3 cm/s, respectively, obtained using a rotating disc electrode. In case of the addition of potassium ion, the rate constants for these Fe2+/Fe3+ system on thin films of PB and bare electrode were given a little high values. The electron transfer rate for 10-3 M Fe(CN)63-/4- were 4.55 × 10-3 and 6.84 × 10-3 cm/s, respectively. The conductivity as directly determined during obtained the voltammogram, was 2.2 × 10-7 (Ω·cm)-1. This value is similar magnitude to that calculated from bulk sample.

New data on Phase Relations in the System Cu-Fe-Sn-S (4성분계 Cu-Fe-Sn-S의 상관관계에 대한 새로운 데이터)

  • Jang, Young-Nam;Moh, Guenter
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 1991
  • Two solid solution-type phases has been experimentally found in the quaternary system Cu-Fe-Sn-S:$(Fe, Cu, Sn)_{1+x}$ and $Cu_{2-x}Fe_(1+x}SnS_4$. These solid solutions are stable around the CuS-FeS-SnS referecne plane in the composition tetrahedron. One is the sphalerite-type monosulfide solid solution which has a extensive stability range with varying degrees of sulfur/metal ratio 9.7-1.0/1.0. The other is tetrahedrite-type phase $Cu_{2-y)Fe_{1+y}SnS_4(y_{max}=0.4)$ which is stable along the $Cu_2FeSnS_4-FeS$ tie line, but shows no phase transformation in the subsolidus range and decomposes incongruently at the range of 835-862${\circ}C$, depending on the compositional variation. Particularly, the latter phase shows the characteristic superstructure reflections, indicating that it is a derivative of sphalerite structure. The stability field of these two sphalerite-type phases are defined on the basis of diffraction pattern and optical homogeneity of the synthetic materials at the temperature range of 700-400${\circ}C$.

  • PDF

Magnetic Propertes of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ Nanocrystalline Alloys ($Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 초미세결정립합금의 자기특성)

  • 조용수;김만중;천정남;김택기;박우식;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.880-894
    • /
    • 1995
  • Magnetic properties of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ rrelt-spun alloys with 6 at% B content were studied aiming for finding out a new $\alpha$-Fe based Nd-Fe-B nanocrystalline alloy with good hard magnetic properties. $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys prepared by RSP crystallized to nanocrystalline phase. An optimally annealed $Nd_{3}{(Fe_{0.9}Co_{0.1})}_{87}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys had larger volume ratio of $\alpha$-Fe(Co) than that of higher Nd content alloy and showed high remanence of about 1.6 T. On the contrary, the increase of Nd content in $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ alloys gave rise to gradual increase of an amount of $Nd_{2}{(Fe,\;Co)}_{14}B$ phase and improved coercivity. An optimally annealed $Nd_{5}{(Fe_{0.9}Co_{0.1})}_{85}B_{6}Nb_{3}Cu_{1}$ alloy showed the most improved hard mag¬netic properties. The remanence, coercivityand energy product of the alloy were 1.35 T, 219 kA/m (2.75 kOe), and $129\;kJ/m^{3}$ (16.2 MGOe), respectively.

  • PDF

The Effect of Ba and Fe Concentration on Soft Magnetic Properties of Z-Type Barium Ferrite (Z-Type 바리움 페라이트 분말의 연자성 특성에 미치는 Ba 및 Fe 농도의 영향)

  • Cho, Kwang-Muk;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • Z-type barium ferrite [($Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$, $Ba_{3+{\delta}}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$ ${\delta}$ = 3, 5, 7, 13 wt%. $Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24+{\delta}}O_{41}$ ${\delta}$ = 5, 7, 10 wt% )] were synthesized using co-precipitation method. The microstructure and magnetic properties of synthesized particles were investigated. In all prepared particles M-type Ba ferrite is identified with Z-type Ba ferrite together. It is found that particles having 7 wt% for Ba and 5 wt% for Fe excess addition revealed high saturation magnetization, respectively. All synthesized particles showed relatively high coercivity for device application. This result may be attributed to the contribution of M-type Ba ferrite. Ba and Fe excess addition was not affected to the structural change of CoZnZ Ba ferrite. The certain amount of excess additions of Ba and Fe and the 2 step heat-treatment may be beneficial to the improvement of soft magnetic properties of Z-type barium hexa-ferrite

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.

Application of a Dynamic-Nanoindentation Method to Analyze the Local Structure of an Fe-18 at.% Gd Cast Alloy

  • Choi, Yong;Baik, Youl;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.576-580
    • /
    • 2017
  • A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of $Fe_9Gd$. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% $Fe_3Gd$, 6.58 at.% $Fe_5Gd$, 16.22 at.% $Fe_9Gd$, 1.87 at.% $Fe_2Gd$, and 39.49 at.% ${\beta}-Fe_{17}Gd_2$. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

Evaluation of the Stability of Fe(III)-Impregnated Activated Carbon and Copper Adsorption (3가철 첨착 활성탄의 안정성 및 구리 흡착특성 평가)

  • Yu, Mok-Ryun;Yang, Jae-Kyu;Lee, Seung-Mok;Kim, Keun-Han
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.328-332
    • /
    • 2006
  • Fe(III)-impregnated activated carbon (Fe-AC) was applied in the treatment of synthetic wastewater containing Cu(II). To investigate the stability of Fe-AC at acidic condition, dissolution of Fe was studied with a variation of solution pH ranging from 2 to 4. Fe-AC was unstable at pH 2, showing a gradual increase of the dissoluted Fe as reaction time increased, while negligible amount of Fe was dissoluted above pH 3. This stability test suggests the applicability of Fe-AC in the treatment of wastewater above pH 3. Adsorption capacity of Cu(II) onto activated carbon (AC) and Fe-AC was investigated in a batch and a column test. In the adsorption kinetics, rapid adsorption of Cu(II) onto AC and Fe-AC was noted at initial reaction time and then reached a near complete equilibrium after 6 hrs. Adsorption trends of Cu(II) onto AC and Fe-AC were similar, showing an increased Cu(II) adsorption at higher pH. Compared with AC, Fe-AC showed a greater Cu(II) adsorption over the entire pH range studied in this research. From the adsorption isotherm obtained with variation of the concentration of Cu(II), the maximum adsorption capacity was identified as 61,700 mg/kg.

Characteristics of the Ceramic Filter Using $0.05Pb(Al_{2/3}W_{1/3})O_3-0.95Pb(Zr_{0.52}Ti_{0.48}O_3$Ceramic System ($0.05Pb(Al_{2/3}W_{1/3})O_3-0.95Pb(Zr_{0.52}Ti_{0.48})O_3$계를 이용한 세라믹 필터 특성)

  • 김남진;윤석진;유광수;김현재;정형진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.71-76
    • /
    • 1992
  • Piezoceramic filters were fabricated by adding $MnO_2 and FeZ0_3$ to the $0.05Pb(Al_{2/3}W_{1/3})O_3-0.95Pb(Zr_{0.52}Ti0.48)O_3$ system using photolithography method. As the amounts of $MnO_2$ increased, the electro-mechanical coupling factor(Kp) decresed. On the other hand, for $Fe_2O_3$ added samples, Kp was 57%, but mechanical quality factor(Qm) showed relatively low value. The passband widths were 155kHz for 0.3wt % $MnO_2$ addition and 260kHz for 0.1 wt % $Fe_2O_3$ addition, and were inversely propotional to Qm values. Group delay time characteristics showed Gausian for $MnO_2$ additions and Butterworth for$Fe_2O_3$ additions.

  • PDF

Corrosion Behaviour of Fe-XAl-0.3Y Alloys at High Temperature Sulfidation Environment(Ps2=10-3Pa) (Fe-XAl-0.3Y 합금의 고온 황화환경(Ps2=10-3Pa)에서의 부식거동)

  • Lee Byung Woo;Park Hwa Soon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.547-551
    • /
    • 2004
  • The sulfidation behaviour of Fe-XAl-0.3Y(X=5, 10, 14, 25 $wt.\%$) alloys was investigated at 1123 K in $H_2/H_{2}S$ gas atmosphere for $1\sim24$ hrs using SEM/EDX, XRD and EPMA. The weight changes of Fe-XAl-0.3Y alloys followed the parabolic rate law, Sulfidation rates of iron aluminide alloys with high Al content were one-twentieth lower than that of 5Al alloys. This is due to the formation of protective $Al_{2}O_3$ oxides on the surface of 10Al, 14Al and 25Al alloys. By calculating partial pressure of impurity oxygen contained $H_2/H_{2}S$ gas, the $Al_{2}O_3$ oxides formation could be explained using Fe-Al-S-O thermodynamic stability diagram. The sulfidation product scales of the 5Al alloy showed that thick iron sulfide scale(FeS) containing porosities formed during early stages of sulfidation. With continued sulfidation, aluminum sulfide was formed at the alloy/scale interface.