• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,669, Processing Time 0.041 seconds

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

Mössbauer Study of Tb2Bi1GaxFe5-xO12(x=0, 1) (Tb2Bi1GaxFe5-xO12(x=0, 1)의 뫼스바우어 분광연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.67-70
    • /
    • 2008
  • $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) fabricated by sol-gel and vacuum sealed annealing process. $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) have been studied by x-ray diffraction(XRD), vibrating sample magnetometer, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The determined lattice constants $a_0$ of x = 0, and 1 are $12.497\AA$, and $12.465\AA$, respectively. The distribution of gallium and iron in $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$ is studied by Rietveld refinement. Based on Rietveld refinement results, the terbium and bismuth ions occupy the 24c site, iron ions occupy the 24d, l6a site, and nonmagmetic gallium ions occupy the 16a site. In order to verify the magnetic site occupancy of iron and gallium, we have taken $M\ddot{o}ssbauer$ spectra for $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) at room temperature. From the results of $M\ddot{o}ssbauer$ spectra analysis, the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 60.8 % and 39.2 %, respectively, and the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 74.7 % and 25.3 %, respectively. It is noticeable that all of the nonmagnetic Ga atoms occupy the 16a site by vacuum annealing process.

Study on the Role of Metal ions for the Activity of the Mitochondrial $F_1-ATPase$ in Lentinus edodes (표고버섯의 Mitochondrial $F_1-ATPase$ 활성도에 미치는 금속이온의 역할에 관한 연구)

  • Park, Sang-Shin;Min, Tae-Jin
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.122-129
    • /
    • 1994
  • The role of metal ions for the activity of the mitochondrial $F_1-ATPase$ was studied. Removal of non-heme iron ion from the mitochondria by dialysis against chelating agents, 10 mM ethylenediaminetetraacetic acid(EDTA) and 10 mM o-phenanthroline(o-Phe), led to 56% and 49% inactivation of the enzyme, respectively. The enzyme dialyzed against EDTA was reactivated 81% by the addition of 0.5 mM $Fe^{3+}$ and 70% by 0.5 mM $Mg^{2+}$. But, $Fe^{2+}$ did not reactivate the enzyme. Coexistence of 0.5 mM $Fe^{2+}$ and 0.5 mM $Mg^{2+}$ resulted in 95% reactivation of the enzyme, while $Fe^{3+}$ with 0.5 mM $Mg^{2+}$ did not reactivate the enzyme like the effect of $Fe^{2+}$ alone. The enzyme dialyzed against o-Phe showed the similar results. These data showed that $Fe^{3+}$ is predominantly required for the activity of the mitochondrial $F_1-ATPase$ in Lentinus edodes and stimulated the activity of it by $Mg^{2+}$. $Fe^{3+}$ and $Mg^{2+}$ increased enzyme's affinity for substrate, decreasing the Km value 1.67 mM to 0.65 mM.

  • PDF

A study on the magnetoresistive characteristics of ${[Ni/Fe/Cu]}_{20}$ multilayers (${[Ni/Fe/Cu]}_{20}$ 다층 박막의 자기저항 특성에 관한 연구)

  • 이후산;민경익;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.289-292
    • /
    • 1993
  • [Ni/Fe/Cu] and [Fe/Ni/Fe/Cu] multilayers were prepared with three gun rf-magnetron sputtering, and dependence of magnetoresistance on the Ni IFe thickness ratio was investigated. Vaccum annealing was tried to invetigated the effect of annealing. Oscillation of magnetoresistance on the Cu spacer thickness was dbserved in these two kinds of multilayers. When the thickness of Fe inserted into the Ni/Cu interface was about $3\;\AA$. the maximum value of magnetoresistance(13 %) could be observed. In a sample of $1~2\;\AA$ Fe thickness, saturation field decreased significantly, while magnetoresistace decreased slightly in comparison with the sample of $3\;\AA$ Fe. In ${[Cu(23\;\AA)/Fe(1\;\AA)/Ni(18\;\AA)/Fe(1\;\AA)]}_{20}/Fe(80\;\AA)/Si$, 6 % magnetoresistance with 100 Oe saturation field could be obtained. No appreciable change in magnetoresistance and saturation field could be observed by low temperature annealing. Formation of Ni-Fe alloy was not confinred.

  • PDF

Electrical Switching Effects in the Sintered $Fe_2O_3$-$Bi_2O_3$ (II) ($Fe_2O_3$-$Bi_2O_3$ 소결체의 전기적 Switching 특성(II))

  • 정환재
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.1
    • /
    • pp.36-39
    • /
    • 1980
  • Studies have been perfor mad on the normalization of V-I characteristics, the dependence of current runaway on the applied step voltage and the analysis of the current channet in the sintered 5Fe$_2$O$_3$-5Bi$_2$O$_3$. From the measurement of snitching Properties of the sintered 5Fe$_2$O$_3$-5Bi$_2$O$_3$, it is exe]twined that the electrical switching mechanism is that of thermal ionic breakolown.

  • PDF

Oxidation of $Cr_3C_2$ Composites with Fe-Scale (Fe-Scale과의 반응에 의한 $Cr_3C_2$계 복합체의 산화손상)

  • 한동빈;홍기곤;박병학
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.767-771
    • /
    • 1994
  • In a salb-preheating furnace of steel-making industry, the oxidation/degradation behavior of Cr3C2 ceramic composited dkid button reaction with scale in Fe-oxide system occurs and was thermodynamically examined. The reaction of scale with Cr3C2 skid button produces Cr3C2(s) and C(s), and Co gas is then evolved from the reaction of C(s) with Fe-scale. Cr3C2(s) from oxidation of Cr3C2(s) reacted with Fe-oxide(s) becomes high-melting chromite. The chromite acts as protection layer against further oxidation and improves resistance of the reaction of Cr3C2 skid button with Fe-scale.

  • PDF

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • Hyunh, Xuan Khoa;Nguyen, Quoc Tuan;Kim, Ji-Sun;Gang, Tae-Hun;Kim, Jin-Cheon;Gwon, Yeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF

A New Method to Determine the Spin Rorientation Angle of Cone Anisotropy from Polcrystalline Magnetization Curves: Anisotropy from Polycrystalline Magnetization Curves Application to $Nd_2Fe_{14}B$ (다결정 자화곡선을 이용한 콘이방성물질의 스핀재배열각 결정법 : $Nd_2Fe_{14}B$에의 적용)

  • ;Jin Han-min
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.144-149
    • /
    • 1998
  • A new method to calculate the spin reorientation angle of cone anisotropy from magnetization curves of magnetically aligned powder is suggested. The spin reorientation angle of polycrystalline $Nd_2Fe_{14}B$ determined by this method coincided with the results obtained from torque magnetometry or magnetization measurements on single crystal. The underestimation of about 9% is expected if the basal plane anisotropy is neglected in determination of the spin reorientation angle of $Nd_2Fe_{14}B$ at 4.2 K.

  • PDF

Magnetic Hardening of Nano-thick $Sm_2Fe_{17}N_x$ Films Grown by Pulsed Laser Deposition

  • Yang, Choong Jin;Wu, Jianmin
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.124-129
    • /
    • 2000
  • $Sm_2Fe_{17}N_x$ film magnets were prepared using a $Sm_2Fe_{17}$ target in a $N_2$ gas atmosphere using a Nd-YAG pulsed laser ablation technique. The effect of nitrogen pressure, deposition temperature, pulse time and film thickness on the structure and magnetic properties of $Sm_2Fe_{17}N_x$ film were studied. Increasing the nitrogen pressure up to 5 atm led to the formation of complete $Sm_2Fe_{17}N_x$ compound. Optimized magnetic properties with the nitrogenation temperature in the range 500-53$0^{\circ}C$ could be obtained by extending the nitrogenation time up to 4 hours. Relatively low coercivities of 400~600 Oe were found in $Sm_2Fe_{17}N_x$films 50~100 m thick, while a $4\piM_s$ of 10$\sim$12 kG could be achieved. In-plane anisotropy, which was the basic goal in this study, was achieved by controlling the nitrogenation parameters.

  • PDF

Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods (화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성)

  • 박현우;이백희;이규환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.