• 제목/요약/키워드: $Fe(OH)_3$

검색결과 893건 처리시간 0.019초

$Fe(OH)_2-BaCO_3$$Fe(OH)_3-BaCO_3$ 의 공심물로부터 Ba-Ferrite 생성과정의 비교 (Comparision between Synthesis Processes of Ba-Ferrite from Coprecipitates $Fe(OH)_2-BaCO_3$ and $Fe(OH)_3-BaCO_3$)

  • 김태옥
    • 한국세라믹학회지
    • /
    • 제19권3호
    • /
    • pp.223-228
    • /
    • 1982
  • For the preparation of ferroxidure BaO.5.5 $Fe_2O_3$ with high coercive force, the green and calcined coprecipitates, which were obtained by neutralizing the mixed salt solution $FeCl_2-BaCl_2$ and $FeCl_3-BaCl_2$ with alkali solution $NaOH-Na_2CO_3$, were investigated about the thermal reaction, crystal growth, and the magnetic properties of the sintered specimens. The very single-domain crystallites of Ba-ferrite with high coercive force are formed from the coprecipitate of amorphous $Fe(OH)_3$ and amorphous $BaCO_3$ at lower temperature than that of subnucleus crystalline $\delta$-FeOOH and amorphous $BaCO_3$.

  • PDF

Fe3(PO4)2 생성에 미치는 침전제와 첨가량의 영향 (Effect of Precipitator and Quantity on the Formation of Fe3(PO4)2)

  • 안석진;이선영;오경환;서동수
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.587-591
    • /
    • 2011
  • The effect of the precipitator (NaOH, $NH_4OH$) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of $Fe_3(PO_4)_2$, which is the precursor used for cathode material $LiFePO_4$ in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine $LiFePO_4$ was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml $FeSO_4$(1M) and 100 ml $H_3PO_4$(1M). The concentration of the NaOH and $NH_4OH$ solution was 1 M. The reaction temperature (25$^{\circ}C$) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of $Fe^{2+}$. Single phase $Fe_3(PO_4)_2$ was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml $NH_4OH$ solutions were added. However, $Fe_3(PO_4)_2$ and $NH_4FePO_4$ were formed when 250 and 300 ml $NH_4OH$ was added. The morphology of the $Fe_3(PO_4)_2$ changed according to the pH. Plate-like lenticular shaped $Fe_3(PO_4)_2$ formed in the acidic solution below pH 5 and plate-like rhombus shaped $Fe_3(PO_4)_2$ formed around pH 9. For the $NH_4OH$, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and $NH_4OH$. It is believed that the formation mechanism of $Fe_3(PO_4)_2$ is quite different between NaOH and $NH_4OH$. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.

공침법에 의한 $\delta$-FeOOH의 제조 및 자기 특성 (Preparation of $\delta$-FeOOH by Coprecipitation Method and Its Magnetic Properties)

  • 김성재;김태옥
    • 한국세라믹학회지
    • /
    • 제33권3호
    • /
    • pp.327-331
    • /
    • 1996
  • $\delta$-FeOOH was prepared by rapid oxidation method of Fe(OH)2 using H2O2. The effects of reaction temperature and mole ratio ([OH-]/[Fe2+])의 몰비를 제조 변수로 하여 최종 생성된 $\delta$-FeOOH의 입자크기 입자형태, 자기특성을 조사하였다. Fe(OH)2 의 반응온도 및 [OH-]/[Fe2+] 비가 $\delta$-FeOOH의 입자크기 및 형상에 많은 영향을 미침을 알수 있었으며 입자 크기는 이 두인자에 비례하여 증가하였다 Fe(OH)2 의 반응온도가 4$0^{\circ}C$ [OH-]/[Fe2+]=5 Fe(OH)2 숙성 시간 2시간에서 제조된 $\delta$-FeOOH를 TEM, VSM으로 입자의 크기 및 자기특성을 조사한결과 평균 입경이 630$\AA$ 정도이고 입도 분포가 양호하였으며 포화자화 및 보자력은 각각 20.8emu/g 210 Oe였다.

  • PDF

Hexagonal Ferrite에 관한 연구 (IV) -혼합수산화물로부터 각종 Hexagonal Ferrite 의 생성과정에 관한 연구- (Studies on the Hexagonal Ferrite(IV) -The Formation Process of the Hexagonal Ferrites During Calcining the Mixture of $Ba(OH)_2$, $Zn(OH)_2$ and $6Fe(OH)_3$-)

  • 김태옥
    • 한국세라믹학회지
    • /
    • 제17권3호
    • /
    • pp.121-128
    • /
    • 1980
  • In order to obtain the fundamental data for the preparation of ferroxplana $Zn_2Y(Ba_2Zn_2Fe_{12}O_{22})$, which is useful for GHz-band communication, the optimum coprecipitation condition of $Zn(NO_3)_2-6FeCl_3$ in $NH_4OH$ solution and the formation process of the hexagonal ferrite were investigated. By the hot-petroleum-drying and calcining the coprecipitated hydroxide mixture $Zn(OH)_2 +Ba(OH)_2+ 6Fe(OH)_3$, the fine and uniform powder was obtained , whose phase composition and microstructure were studied by X.R.D. and electron microscope. In results, it was found that $Zn_2Y$, BaM and $Zn_2W$ were the representative phases in calcined specimens whose activation energies of crystal growth were about 3, 8, 2.5, $5.4{\times}10^4$ J/mole , respectively. The sintered specimens would be appreciated as useful magnetic cores for the high frequency communication.

  • PDF

A Study on the Morphology of Carbon Nanomaterials prepared by Thermal CVD on the Mechanochemical Treated Catalysts

  • Ryu, Ho-Jin;Yi, Hyung-Kyun;Saito, Fumio;Lee, Byuung-Il;Chang, Ho-Jung
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.75-78
    • /
    • 2002
  • CNTs have been grown by the thermal CVD process in which $C_{2}H_{2}$ gas was deposited on the Fe - $Al(OH)_3$ mixture pretreated by mechanochemical treatment with a high energy mixer mill. As the duration time of grinding fer $Fe-(Al(OH)_3$ mixture by the mixer mill increased, amorphous $Al(OH)_3$ and more smaller Fe particles agglomerated into spheres. With unground and ground mixtures of $Fe-Al(OH)_3$, CNTs were grown at $700^{\circ}C$. As a result, CNTs grown on ground mixtures have more uniform diameter and morphology than those of unground mixture. The characterization of $Fe-Al(OH)_3$ mixture and as-grown CNTs were done by XRD, SEM and TEM.

  • PDF

Oxidation Behavior of $Ni_xFe_{1-x}(OH)_2$ in $C\Gamma$-containing Solutions

  • Chung, Kyeong Woo;Kim, Kwang Bum
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.148-154
    • /
    • 2003
  • The addition of Ni leads to the formation of protective rust layer on steel and subsequently high corrosion resistance of steel in $Cl^-$-containing environment. $\alpha$-FeOOH, $\beta$-FeOOH, $\gamma$-FeOOH and $Fe_3O_4$ are formed mainly on steels exposed to $Cl^-$-containing environment. As the first work of this kind, this study reports the influence of Ni on the oxidation behavior of $Ni_xFe_{1-x}(OH)_2$ in $Cl^-$-containing solution at two different pH regions(condition I under which the solution pH is allowed to decrease and condition I under which solution pH is maintained at 8) where $\gamma$-FeOOH and $Fe_3O_4$ are predominantly formed, respectively, upon oxidation of $Fe(OH)_2$, In the presence of Ni(II) in the starting solution, the formation of $\beta$-FeOOH was facilitated and the formation of $\gamma$-FeOOH was suppressed with increasing Ni(II) content and with increasing oxidation rate of Fe(II). Ni(II) was found to have $Fe_3O_4$-suppressing effect under condition II.

리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구 (A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics)

  • 정원중;주재백;손태원
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.156-162
    • /
    • 1999
  • 본 연구에서는 리튬전지 내 양극 재료로서 리튬-철계 산화물의 응용가능성을 모색하기 위하여 여러 제조방법에 따라 변화되는 전기화학적 특성을 고찰하고자 하였다. 철산화물에 대한 기본적인 양극 전기화학적 특성을 관찰하기 위해 철판, 철분말을 산화시켜 제작한 전극과 FeOOH 분말로 제작한 전극을 전류전위 순환실험을 실행하였다. 그 결과 철판과 FeOOH분말 전극의 경우 거의 리튬 층간의 산화-환원 반응이 일어나지 않음을 알 수 있었으며 철 분말의 산화물 전극에서는 리튬이온의 환원반응 피크는 보이나 산화반응은 거의 관찰되지 않았다. 또한 출발 물질 $FeCl_3-6H_2O,\;NaOH.\;LiOH$를 혼합하여 저온으로 가열하여 층상의 $LiFeO_2$를 합성하였으며, 출발 물질의 조성비를 바꾸어 그 영향을 조사하였다. 그 결과 NaOH의 첨가량이 증가할수록 전극의 용량과 효율은 감소하나 용량의 감소율은 작아짐을 알 수 있었다. $NaOH/FeCl_3/LiOH$의 몰 비를 2/1/7로 조성하여 합성하였을 때 가장 큰 용량을 보였으나 효율은 30회 순환 후 급격히 감소하였다.

염소계 유기화합물로 오염된 지하수의 반응성 투과 벽체 처리 효율에 대한 온도의 영향 (Influence of Temperature on the Treatment Efficiency of Chlorinated Organic Substances in Groundwater by Permeable Reactive Barrier)

  • 김선혜;김은지;김동수
    • 한국물환경학회지
    • /
    • 제30권2호
    • /
    • pp.175-183
    • /
    • 2014
  • The influence of temperature on the treatment efficiency of chlorinated organic substances contained in groundwater by permeable reactive barrier which is composed of $Fe^{\circ}$ has been investigated by constructing the Pourbaix diagrams for Fe-$H_2O$ system at different temperatures based on thermodynamic estimation. In aerobic condition, the equilibrium potentials for $Fe^{\circ}/Fe^{2+}$ and $Fe^{2+}/Fe^{3+}$ were observed to increase, therefore, the dechlorination reaction for organic pollutants by $Fe^{\circ}$ was considered to decline with temperature due to the diminished oxidation of reactive barrier. The result for the variations of the ionization fraction of $Fe^{2+}$ and $Fe^{3+}$ ion in the pH range of 0 ~ 2.5 obtained by employing Visual MINTEQ program showed that the ionization fraction of $Fe^{2+}$ increased with pH, however, that of $Fe^{3+}$ decreased symmetrically and the extent of the variation of ionization fraction for both ions was raised as temperature rises. The equilibrium pH for $Fe^{3+}/Fe(OH)_3$ was examined to decrease with temperature so that the treatment efficiency of chlorinated organic substance was expected to decrease with temperature due to the enhanced formation of passivating film in aerobic condition. The change of the reactivity of a specific chemical species with temperature was defined quantitatively based on the area of its stable region in Pourbaix diagram and depending on this the reactivity of $Fe^{3+}$ was shown to decrease with temperature, however, that of $Fe(OH)_3$ was decreased monotonously as temperature is raised for $Fe^{3+}/Fe(OH)_3$ equilibrium system. In anaerobic condition, the equilibrium potential for $Fe^{\circ}/Fe^{2+}$ was observed to rise and the equilibrium pH for $Fe^{2+}/Fe(OH)_2$ were examined to decrease as temperature increases, therefore, similar to that for aerobic condition the efficiency of the dechlorination reaction for organic substances was considered to be diminished when temperature rises because of the reduced oxidation of $Fe^{\circ}$ and increased formation of $Fe(OH)_2$ passivating film.

Synthesis of Barium Ferrite Powder by the Coprecipitation Method using Iron Pickling Waste Acid

  • Youngjae Shim;Kim, Dong-Whan;Kim, Guk-Tae
    • 한국세라믹학회지
    • /
    • 제38권5호
    • /
    • pp.401-404
    • /
    • 2001
  • Barium ferrite powders were synthesized by the coprecipitation method using iron-pickling waste acid (IPWA) and BaCl$_2$$.$2H$_2$O as raw materials. Fe$\^$2+/ ions in the IPWA, which contains both Fe$\^$2+/ and Fe$\^$3+/ ions, were oxidized into Fe$\^$3+/ ions using H$_2$O$_2$. Proper amount of BaCl$_2$$.$2H$_2$O was dissolved into the oxidized IPWA. Using NaOH, Ba$\^$2+/ and Fe$\^$3+/ ions were coprecipitated as Ba(OH)$_2$and Fe(OH)$_3$. The coprecipitated Ba(OH)$_2$and Fe(OH)$_3$were washed and dried. Barium ferrite powders were obtained by calcining the dried Ba(OH)$_2$and Fe(OH)$_3$mixture from 400$\^{C}$ to 1000$\^{C}$ with a 100$\^{C}$ interval. Barium ferrite powders were characterized by X-ray diffraction, SEM, and VSM. It was found that barium ferrite powders could be synthesized at around 630$\^{C}$. The synthesized barium ferrite powders showed hexagonal plate shapes with a fairly uniform size. The barium ferrite powder calcined at 900$\^{C}$ showed good magnetic properties, saturation magnetization of 67emu/g and maximum coercivity of 5000 Oe.

  • PDF