• Title/Summary/Keyword: $Eu_2O_3$

Search Result 510, Processing Time 0.027 seconds

Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property (나노 크기의 Gd2O3:Eu3+ 적색형광체가 코팅된 판상 Mica의 제조 및 형광특성)

  • Ban, Se-Min;Park, Jeong Min;Jung, Kyeong Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kang, Myung Chang;Kim, Dae-Sung
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.457-463
    • /
    • 2017
  • Nanosized $Gd_2O_3:Eu^{3+}$ red phosphor is prepared using a template method from metal salt impregnated into a crystalline cellulose and is dispersed using a bead mill wet process. The driving force of the surface coating between $Gd_2O_3:Eu^{3+}$ and mica is induced by the Coulomb force. The red phosphor nanosol is effectively coated on mica flakes by the electrostatic interaction between positively charged $Gd_2O_3:Eu^{3+}$ and negatively charged mica above pH 6. To prepare $Gd_2O_3:Eu^{3+}$-coated mica ($Gd_2O_3:Eu/mica$), the coating conditions are optimized, including the stirring temperature, pH, calcination temperature, and coating amount (wt%) of $Gd_2O_3:Eu^{3+}$. In spite of the low luminescence of the $Gd_2O_3:Eu/mica$, the luminescent property is recovered after calcination above $600^{\circ}C$ and is enhanced by increasing the $Gd_2O_3:Eu^{3+}$ coating amount. The $Gd_2O_3:Eu/mica$ is characterized using X-ray diffraction, field emission scanning electron microscopy, zeta potential measurements, and fluorescence spectrometer analysis.

A Fundamental Study of Eu2+ Luminescence in Aluminum Borate Compounds (Aluminum Borate 화합물에 있어서 EU2+이온의 발광성)

  • Chang, Ki-Seog
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.350-355
    • /
    • 2000
  • The compounds, CaAl$_2$(BO$_3$)$_2$O, SrAl$_2$(BO$_3$)$_2$O and BaAl$_2$(BO$_3$)$_2$O, are good host lattices for highly efficient $Eu^{2+}$ luminescence. The europium emission peaks at 450 nm in $Eu^{2+}$:CaAl$_2$(B0$_3$)$_2$O, 411 nm in $Eu^{2+}$: SrAl$_2$(BO$_3$)$_2$O and 375 nm in $Eu^{2+}$: BaAl$_2$(BO$_3$)$_2$O. The $Eu^{2+}$: CaAl$_2$(BO$_3$)$_2$O Phosphor shows a high output and should be a good maintenance in VUV Xe lamps. It is ideally suited for use in PDP phosphors. The $Eu^{2+}$ ion is interesting because the Stokes shift emission is a strong host dependent. The difference in the Stokes shift is oneimportant factor leadingto a difference in wavelength. If the 5d level of $Eu^{2+}$ ion is lower in energy,according to a decrease in the doping lattice size, then the emission wavelength will be longer and the Stokes shift will be smaller. Therefore, a knowledge of the relationship between the crystal lattice size and the Stokes shift. (orthe energy of the 5d level),is essential for beingable to predict $Eu^{2+}$ emission properties.

  • PDF

Growth of long persistent $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ phosphor single crystals by the Verneuil method (베르누이법 의한 장잔광성 $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ 단결정 성장)

  • Nam, Kyung-Ju;Choi, Jong-Keon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.225-228
    • /
    • 2005
  • We have grown the long persistent $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ phosphor single crystal by Verneuil method. The obtained single crystals were long persistent phosphorescence peaking at ${\lambda}=520nm$ with a size of about 5 mm diameter, 55 mm length. The melting temperature of $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ measured $T_{mp}=1968^{\circ}C$. The optimum composition was $SrCO_3:Al(OH)_3:Eu_2O_3:Dy_2O_3$ = 1 : 2 : 0.015 : 0.02. Flow rate of $H_2:O_2$ is about 4 : 1. Growthing rate is about 5 mm/hr. The spectra of the phosphorescence from the crystals are quite similar to those obtained with sintered powders used for luminous pigments. The crystalline structure of long persistent $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ phosphor single crystal was determined by X-ray diffraction.

Photoluminescent properties of red phosphor (Y,Gd)$_2$O$_3$: Eu for plasma display panel synthesized by homogeneous precipitation method (균일침전법으로 제조한 플라즈마 디스플레이용 적색 형광체 (Y,Gd)$_2$O$_3$: Eu의 발광특성)

  • 김유혁;김좌연
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.400-406
    • /
    • 2000
  • The fired Precursor (Y,Gd,Eu)(OH)$CO_3$.$H_2O$$900^{\circ}C$ was used to synthesize the red phosphor $(Y,Gd)_2O_3$: Eu for plasma display panel. Rounded and ~l $\mu\textrm{m}$ diameter phosphor $(Y,Gd)_2O_3$: Eu can be obtained by the reaction of aformentioned powder with a small amount addition of flux at $1350^{\circ}C$ for 2 hours. Emission spectra of these phosphors were measured under excitation wavelength at 254 nm and 147 nm and the optimum concentrations of activator ion were determined at around 15 mo1e % and 10 mole % under these conditions, respectively. $BaCO_3$flux had the best property in emission intensity among the prepared $BaCO_3AlF_3$and $Li_3PO_4$phosphors. The properties of optimized sample were improved in terms of relative luminance and color coordinate comparing with commercial phosphor such as $Y_2O_3$: Eu.

  • PDF

Effects of deposition temperature on the properties of SnO2:Eu3+ thin films grown by radio-frequency magnetron sputtering (증착 온도가 라디오파 마그네트론 스퍼터링으로 성장한 SnO2:Eu3+ 박막의 특성에 미치는 영향)

  • Shinho Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.201-207
    • /
    • 2023
  • Eu3+-doped SnO2 (SnO2:Eu3+) phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering. The deposition temperature was varied from 100 to 400 ℃. The X-ray diffraction patterns showed that all the thin films had two mixed phases of SnO2 and Eu2Sn2O7. The 880 nmthick SnO2:Eu3+ thin film grown at 100 ℃ exhibited numerous pebble-shaped particles. The excitation spectra of SnO2:Eu3+ thin films consisted of a strong and broad peak at 312 nm in the vicinity from 250 to 350 nm owing to the O2--Eu3+ charge transfer band, irrespective of deposition temperature. Upon 312 nm excitation, the SnO2:Eu3+ thin films showed a main emission peak at 592 nm arising from the 5D07F1 transition and a weak 615 nm red band originating from the 5D07F2 transition of Eu3+. As the deposition temperature increased, the emission intensities of two bands increased rapidly, approached a maximum at 100 ℃, and then decreased slowly at 400 ℃. The thin film deposited at 200 ℃ exhibited a band gap energy of 3.81 eV and an average transmittance of 73.7% in the wavelength range of 500-1100 nm. These results indicate that the luminescent intensity of SnO2:Eu3+ thin films can be controlled by changing the deposition temperature.

A Study on the Luminescence Properties of Eu3+ Ions Doped Vanadate (Eu3+ 이온이 첨가된 바나듐산염의 형광특성 연구)

  • Kang, Yeonhee;Yoon, Changyong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.445-451
    • /
    • 2019
  • The fluorescence intensity and fluorescence lifetime of $Ba_2GdV_3O_{11}$, a vanadate compound based on $Ba^{2+}$ ion, were investigated by adding $Eu^{3+}$ as a rare earth ion which is an alkaline earth metal, which is distributed around active ions and has a large influence on fluorescent properties when used as a host in a phosphor. $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor was synthesized by solid state method and the crystallinity of the phosphor was confirmed by X - ray diffraction analysis. The fluorescence properties of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor were measured using optical and laser. The energy transfer and diffusion of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor are highly dependent on the concentration of $Eu^{3+}$. When the concentration of $Eu^{3+}$ is low, it shows strong fluorescence to the CT band. However, as the concentration of $Eu^{3+}$ increases, the fluorescence due to 4f - 4f transition is strong. The concentration of $Eu^{3+}$ ion increased and the energy between ions was diffused, and the lifetime of fluorescence decreased. Energy transfer occurs between two $Eu^{3+}$ ions at low $Eu^{3+}$ concentration and energy diffusion occurs at high $Eu^{3+}$ concentration.

Photoluminescence of Li-doped Y2O3:Eu3+ thin film phosphors grown by pulsed laser deposition

  • Yi, Soung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.371-377
    • /
    • 2002
  • $Y_2O_3:Eu^{3+}$ and Li-doped $Y_2O_3:Eu^{3+}$ thin films have been grown on sapphire substrates using a pulsed laser deposition technique. The thin film phosphors were deposited at a substrate temperature of $600^{\circ}C$ under the oxygen pressure of 100, 200 and 300 mTorr. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity and photoluminescence (PL) of the films are highly dependent on the oxygen pressure. The PL brightness data obtained from $Y_2O_3:Eu^{3+}$ films grown under optimized conditions have indicated that sapphire is one of the most promising substrate for the growth of high quality $Y_2O_3:Eu^{3+}$ thin film red phosphor. In particular, the incorporation of $Li^{+}$ ions into $Y_2O_3$ lattice could induce a remarkable increase of PL. The highest emission intensity was observed with LiF-doped $Y_{1.84}Li_{0.08}Eu_{0.08}O_3(Y_2O_3LiEu)$, whose brightness was increased by a factor of 2.7 in comparison with that of $Y_2O_3:Eu^{3+}$ films. This phosphor may promise for application to the flat panel displays.

Sulfurization of Rare-Earth Oxides Using $H_2S$ and $SC_2$

  • Sato, Nobuaki;Sato, Soichi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.60-63
    • /
    • 2004
  • Sulfurization of rare-earth oxides R203 (R=Nd, Eu) using sulfurizing reagents, such as $H_2S$ and $SC_2$was examined for the sulfide magnetic separation of spent fuel. $EU_2O_3$was found to react with H$_3$S gas forming the mixture of $EU_2O_2S$ and EuS at 500 oC, while EuS was formed by $SC_2$ at 800 oC. In the case of the mixture of $R_2O_3$and $UO_2$, EuS and $ND_3S_4$ were formed as well as $EU_2O_2S$ and $Nd_2O_2S$ at 500oC in $H_2S$, though $UO_2$ remained unreacted.

  • PDF

Temperature and Ligand Effects on the Eu(Ⅲ) Emission Spectra in the Aqueous Solution (수용액에서의 Eu(Ⅲ) 착물의 형광스펙트럼에 영향을 미치는 온도 및 리간드 효과에 관한 연구)

  • Lee, In Suk;Kim, Geon
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.548-554
    • /
    • 1990
  • Temperature effects on the fluorescence emission spectra of 0.01 M Eu(III) ion with ClO$_4$, Cl$^-$, NO$_3$ were studied. Relative intensity change of hypersensitive band ($^5D0\; {\to}\;^7F_2$) and nonhypersensitive band ($^5D0 \;{\to}\;^7F_1$) was quite remarkable with temperature and ligand. The relative intensity change was interpreted as the change of formation constant and used to calculation the enthalpy change of $Eu(H_2O)_X^{3+}$+ to EuL(H$_2O)_{X-1}^{2+}$ complex. $\Delta{H}$ of $Eu(H_2O)_X^{3+}$ to EuCl(H$_2O)_{X-1}^{2+}$ was roughly 15 kJ/mol and temperature independent, but $\Delta{H}$ of EuNO$_3(H_2O)_{X-1}^{2+}$ was changed with temperature; -11 kJ/mol at 25$^{\circ}C$ and 47 kJ/mol at 250$^{\circ}C$.

  • PDF