• Title/Summary/Keyword: $EtCO_2$

Search Result 519, Processing Time 0.036 seconds

Efficient Synthesis of hypho-2,5-$S_2B_7H_{11}$ and Preparation of New nido-, arachno-, and hypho-Metalladithiaborane Clusters Derived from Its Anion hypho-$S_2B_7H_{10}{^-}$

  • 강창환;김성준;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1067-1074
    • /
    • 1995
  • Reaction of arachno-S2B7H8- with either THF or 1,2-dimethoxyethane upon refluxing condition results in the formation of the previously known compound hypho-S2B7H10-. Protonation of hypho-S2B7H10- with HCl/Et2O generates hypho-2,5-S2B7H11 in good yield. This hypho-S2B7H10- anion has been employed to generate a series of new nido-, arachno-, and hypho-metalladithiaborane clusters. Reaction of the anion with Cp(CO)2FeCl results in direct metal insertion and the formation of a complex containing the general formula (η5-C5H5)FeS2B7H8. Spectroscopic studies of nido-6-CpFe-7,9-S2B7H8 Ⅰ demonstrated that compound Ⅰ was shown to have an nido-type cage geometry derived from an octadecahedron missing one vertex, with the iron atom occupying the three-coordinate 6-position in the cage and the two sulfurs occupying positions on the open face of the cage. Reaction of hypho-S2B7H10- with CoCl2/Li+[C5H5]- gave the previously known complex arachno-7-CpCo-6,8-S2B6H8 Ⅱ. Also, the reaction of the anion with [Cp*RhCl2]2 gave the complex arachno-7-Cp*Rh-6,8-S2B6H8 Ⅲ, the structure of which was shown to be that of complex Ⅱ. The similarity of the NMR spectra of Ⅱ and Ⅲ suggest that Ⅲ adopts cage structure similar to that previously confirmed for Ⅱ. A series of 9-vertex hypho clusters in which the sulfur atoms are bridged by different species isoelectronic with a BH3 unit, such as HMn(CO)4 or SiR2 have been prepared. Compounds Ⅳ,Ⅴ and Ⅵ are each 2n+4 skeletal electron systems and would be expected according to skeletal electron counting theory to adopt hypho-type polyhedral structures derived from an icosahedron missing three vertices. The complex hypho-1-(CO)4Mn-2,5-S2B6H9 Ⅳ was obtained by the reaction of the anion with (CO)5MnBr and has been shown from spectroscopic data to consist of a (CO)4Mn fragment bound to the two sulfur atoms S2 and S5 of hypho-S2B7H10-. Also, similar hypho-type complexes hypho-1-R2Si-2,5-S2B6H8 (R=CH3 Ⅴ, R=C6H5 Ⅵ) have been prepared from the reaction of hypho-S2B7H10- with R2SiHCl.

Preparation of Pure CO2 Standard Gas from Calcium Carbonate for Stable Isotope Analysis (탄산칼슘을 이용한 이산화탄소 안정동위원소 표준시료 제작에 대한 연구)

  • Park, Mi-Kyung;Park, Sunyoung;Kang, Dong-Jin;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Jooil;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • The isotope ratios of $^{13}C/^{12}C$ and $^{18}O/^{16}O$ for a sample in a mass spectrometer are measured relative to those of a pure $CO_2$ reference gas (i.e., laboratory working standard). Thus, the calibration of a laboratory working standard gas to the international isotope scales (Pee Dee Belemnite (PDB) for ${\delta}^{13}C$ and Vienna Standard Mean Ocean Water (V-SMOW) for ${\delta}^{18}O$) is essential for comparisons between data sets obtained by other groups on other mass spectrometers. However, one often finds difficulties in getting well-calibrated standard gases, because of their production time and high price. Additional difficulty is that fractionation processes can occur inside the gas cylinder most likely due to pressure drop in long-term use. Therefore, studies on laboratory production of pure $CO_2$ isotope standard gas from stable solid calcium carbonate standard materials, have been performed. For this study, we propose a method to extract pure $CO_2$ gas without isotope fractionation from a solid calcium carbonate material. The method is similar to that suggested by Coplen et al., (1983), but is better optimized particularly to make a large amount of pure $CO_2$ gas from calcium carbonate material. The $CaCO_3$ releases $CO_2$ in reaction with 100% pure phosphoric acid at $25^{\circ}C$ in a custom designed, evacuated reaction vessel. Here we introduce optimal procedure, reaction conditions, and samples/reactants size for calcium carbonate-phosphoric acid reaction and also provide the details for extracting, purifying and collecting $CO_2$ gas out of the reaction vessel. The measurements for ${\delta}^{18}O$ and ${\delta}^{13}C$ of $CO_2$ were performed at Seoul National University using a stable isotope ratio mass spectrometer (VG Isotech, SIRA Series II) operated in dual-inlet mode. The entire analysis precisions for ${\delta}^{18}O$ and ${\delta}^{13}C$ were evaluated based on the standard deviations of multiple measurements on 15 separate samples of purified $CO_2$. The pure $CO_2$ samples were taken from 100-mg aliquots of a solid calcium carbonate (Solenhofen-ori $CaCO_3$) during 8-day experimental period. The multiple measurements yielded the $1{\sigma}$ precisions of ${\pm}0.01$‰ for ${\delta}^{13}C$ and ${\pm}0.05$‰ for ${\delta}^{18}O$, comparable to the internal instrumental precisions of SIRA. Therefore, we conclude the method proposed in this study can serve as a way to produce an accurate secondary and/or laboratory $CO_2$ standard gas. We hope this study helps resolve difficulties in placing a laboratory working standard onto the international isotope scales and does make accurate comparisons with other data sets from other groups.

Small group of protostellar objects: L1251C

  • Kim, Jungha;Lee, Jeong-Eun;Choi, Minho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2013
  • We present molecular line observations of a small group of Young Stellar Objects (YSOs), L1251C. Observations by Spitzer Space Telescope legacy program "From Molecular Cores to Planet Forming Disks"(c2d; Evans et al. 2003) revealed that there are three YSOs within ~15" in L1251C: IRS1 (Class I), IRS2 (Class II), and IRS3 (Class II). In order to understand the molecular environment around these YSOs, we carried out the KVN single-dish observations in $HCO^+$ J=1-0, $H^{13}CO^+$ J=1-0, $N_2H^+$ J=1-0 and HCN J=1-0. CO J=1-0 was also mapped in L1251C with the TRAO 14m telescope. Integrated intensity maps of high density tracers such as $H^{13}CO^+$ J=1-0, $N_2H^+$ J=1-0 and HCN J=1-0 show similar emission distributions, whose peaks are off from the positions of YSOs. However, $HCO^+$ J=1-0, which is believed to trace both infall and outflow, presents its emission distribution different from those of other molecular transitions. The line profile of $HCO^+$ J=1-0 is superimposed by two velocity (narrow and broad) components. The $HCO^+$ outflow map reveals multiple structures while the CO outflow map elongates mainly along the EW direction. With the KVN single dish, the 22 GHz $H_2O$ maser emission has been also monitored toward L1251C to find variations of the systemic velocity and intensity with time.

  • PDF

GG Tauri A: gas properties and dynamics from the cavity to the outer disk

  • Nguyen, Thi Phuong;Dutrey, Anne;Pham, Ngoc Diep;Chapillon, Edwige;Guilloteau, Stephane;Lee, Chang Won;Di Folco, Emmanuel;Majumdar, Liton;Bary, Jeff;Beck, Tracy L.;Coutens, Audrey;Denis-Alpizar, Otoniel;Melisse, Jean-Paul;Pietu, Vincent;Stoecklin, Thierry;Tang, Yei-Wen
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.38.2-39
    • /
    • 2021
  • I will presents the analysis of the gas properties of the protoplanetary disk surrounding the young low-mass (about 1.2Msun) triple star, GG Tau A. This work makes use of ALMA observations of rotational lines of CO (12CO, 13CO and C18O) together NOEMA observations of a few dozens of other molecules. While the CO emission gives information on the molecular layer close to the disk atmosphere, its less abundant isotopologues 13CO and C18O bring information much deeper in the molecular layer. I will present the analysis of the morphology and kinematics of the gas disk using the CO isotopologues. A radiative transfer model of the ring in CO isotopologues will also be presented. The subtraction of this model from the original data reveals the weak emission of the molecular gas lying inside the cavity. Thus, I am able to evaluate the properties of the gas inside the cavity, such as the gas dynamics, excitation conditions, and the amount of mass in the cavity. High angular resolution observations of CO reveals sprials induced by embedded planet(s) located near the 3:2:1 mean-motion resonance that help to explain the special morphology of the circumbinary disk. I also discuss some chemical properties of the GG Tau A disk. I report the first detection of H2S and C2S in a protoplanetary disk. The molecule abundance relative to 13CO of about twenties other molecules will also be given. In GG Tau A, the detections of rare molecules such as H2S and C2S have been probably possible because the disk is more massive (a factor about 3-5) than other disks where the molecules was searched. Such a large disk mass makes the system suitable to detect rare molecules and to study cold-chemistry in protoplanetary disks.

  • PDF

Acyl-CoA: Cholesterol Acyltransferase Inhibitors from llex macropoda

  • Im Kyung-Ran;Jeong Tae-Sook;Kwon Byoung-Mog;Baek Nam-In;Kim Sung-Hoon;Kim Dae-Keun
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.191-194
    • /
    • 2006
  • Twigs from llex macropoda were extracted with MeOH, and the concentrated extracts were partitioned with $CH_2Cl_2$, EtOAc, n-BuOH, and $H_2O$. Repeated column chromatography of the $CH_2Cl_2$ fraction ultimately resulted in the isolation of two compounds, via activity-guided fractionation, using ACAT inhibitory activity measurements. According to the physico-chemical data, the chemical structures of these isolated compounds were identified as lupeol (1) and betulin (2). Compounds 1 and 2 were shown to inhibit the activity of hACAT-1 and hACAT-2 in a dose-dependent manner, and compounds 1 and 2 inhibited hACAT-1 with $IC_{50}$ values of 48 and $83{\mu}M$, respectively.

Synthesis of (S)-5-iodo-2-aminoindan.HCI ((S)-5-요오드 -2-아미노인단.염산염의 합성)

  • 마은숙
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.582-587
    • /
    • 2001
  • (S)-5-iodo-2-aminoindan.HCI (7) was synthesized for developing a serotonergic agent. (S)- Phenylalanine was protected with trifuoroacetyl group and compound 2 was prepared by direct iodination in acetic acid and in the presence of I$_2$, KIO$_4$, and sulfuric acid. Compound 3 was cyclized by Friedel-Crafts reaction and reduced with NaBH$_4$ to form 5-iodo-2-(N-trifluoroacetyl)aminoindan-1-ol (4) . This compound was reduced to indan derivative 5 using the triethylsilane and BF$_3$ . Et$_2$O. It was basified with $K_2$CO$_3$ solution and treated with saturated HCl in ethyl ether to isolate compound 7.

  • PDF

Phosphate solubilizing effect by two paraburkholderia bacteria Isolated from button mushroom medium (양송이배지로부터 분리한 두 Paraburkholderia 속 세균에 의한 인산가용화 효과)

  • Yu, Hye-Jin;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.17 no.2
    • /
    • pp.64-69
    • /
    • 2019
  • The present study was conducted to investigate the synergistic effects caused by single and co-inoculation of the phosphate solubilizing bacteria (PSB), Paraburkholderia phenazinium YH3 and Paraburkholderia metrosideri YH4. Phosphate solubilization was assessed by measuring the phosphorus contents for 7 days in a single and co-inoculation medium. Co-inoculation of the two strains was found to release the highest content of soluble phosphorus ($1,250{\mu}g\;mL^{-1}$) into the medium, followed by the single inoculation of P. metrosideri YH4 ($1196.59{\mu}g\;mL^{-1}$) and P. phenazinium YH3 ($994.34{\mu}g\;mL^{-1}$). The highest pH reduction, organic acid production and glucose consumption was also observed in the co-inoculation medium of the two strains. A plant growth promotion bioassay revealed that co-inoculation with the two strains enhanced the growth of romaine lettuce more than single inoculation with either of the two strains (28.5% for leaf and 16.6% for root). Although there was no significant difference between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, the synergistic effects of co-inoculation with PSB could be beneficial for crop growth.

Influence of Gas Transfer Velocity Parameterization on Air-Sea $CO_2$ Exchange in the East (Japan) Sea

  • Hahm, Do-Shik;Rhee, Tae-Siek;Kang, Dong-Jin;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • Gas flux across the air-sea interface is often determined by the product of gas transfer velocity k) and the difference of concentrations in water and air. k is primarily controlled by wind stress on the air-sea interface, thus all parameterizations ofk involve wind speed, a rough indicator of wind stress, as one of the independent variables. We attempted to explore the spatial and temporal variations of k in the East (Japan) Sea using a database from Naet al. (1992). Three different parameterizations were employed: those of Liss and Merlivat (1986), Wanninkhof(1992), and Wanninkhofand McGillis (1999). The strong non-linear dependence of k on wind speed in all parameterizations leads us to examine the effect of time resolution, in which the binned wind speeds are averaged, on the estimation ofk. Two time resolutions of 12 hours (short-term) and one month (long-term) were chosen. The mean wind speeds were fed into the given parameterizations, resulting in six different transfer velocities of $CO_2$ ranging from 12 to 32 cm/h. In addition to the threefold difference depending on the choice of parameterization, the long-term average of wind speed results in a value ofk up to 20% higher than the short-term (12 hours) average of wind speed due to the non-Rayleigh wind distribution in the East (Japan) Sea. While it is not known which parameterization is more reliable, this study proposes that the time-averaged wind speed should not be used in areas where non-Ralyleigh wind distribution prevails such as the East (Japan) Sea. The net annual $CO_2$ flux was estimated using the value of k described above and the monthly ${\Delta}fCO_2$ of Oh et al. (1999); this ranges from 0.034 to 0.11 Gt-C/yr.

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Isolation of Flavonoids and Lignans from the Stem Wood of Lindera obtusiloba Blume (생강나무(Lindera obtusiloba Blume) 목부로부터 Flavonoid 및 Lignan 화합물의 분리)

  • Seo, Kyeong-Hwa;Baek, Mi-Young;Lee, Dae-Young;Cho, Jin-Gyeong;Kang, Hee-Cheol;Ahn, Eun-Mi;Baek, Nam-In;Lee, Youn-Hyung
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.178-183
    • /
    • 2011
  • The stem woods of Lindera obtusiloba Blume were extracted in 80% aqueous methanol and the concentrated extract was partitioned with ethyl acetate (EtOAc), butanol (n-BuOH), and $H_2O$, successively. From the EtOAc and n-BuOH fractions, five compounds were isolated through the repeated silica gel, octadecyl silica gel, and Sephadex LH-20 column chromatographies. On the basis of spectroscopic data including mass spectrometry, IR, $^1H$-NMR, $^{13}C$-NMR, distortionless enhancement by polarization transfer, and two-dimensional-NMR gradient correlated spectroscopy (gCOSY), gradient heteronuclear single quantum correlation (gHSQC), gradient heteronuclear multiple bonding connectivity (gHMBC), the chemical structures of the compounds were determined as asarinin (1), (+)-catechin (2), (-)-epicatechin (3), hyperin (4), and nudiposide (5). Compounds 1 and 5 were isolated for the first time from the stem wood of L. obtusiloba Blume.