• Title/Summary/Keyword: $ETM^+$

Search Result 267, Processing Time 0.022 seconds

Entropy Extracting Method of Li-ion Battery Using Commercial Equipment (상용 장비를 이용한 리튬이온 배터리의 엔트로피 추출방법)

  • Park, Cheol-heui;Lee, Sang-Gug
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.318-320
    • /
    • 2017
  • 본 연구는 리튬이온 배터리의 엔트로피를 측정하는 방법인 ETM(Electro Thermodynamics Measurement)을 상용 장비에 적용하는 방법에 관한 것이다. 그리고 엔트로피 측정에 필요한 온도변경시간과 배터리의 relaxation 시간을 최소화함으로써, 측정의 정확성을 유지하면서 측정 시간을 최소화 했다.

  • PDF

Automated Geo-registration for Massive Satellite Image Processing

  • Heo, Joon;Park, Wan-Yong;Bang, Soo-Nam
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.345-349
    • /
    • 2005
  • Massive amount of satellite image processing such asglobal/continental-level analysis and monitoring requires automated and speedy georegistration. There could be two major automated approaches: (1) rigid mathematical modeling using sensor model and ephemeris data; (2) heuristic co-registration approach with respect to existing reference image. In case of ETM+, the accuracy of the first approach is known as RMSE 250m, which is far below requested accuracy level for most of satellite image processing. On the other hands, the second approach is to find identical points between new image and reference image and use heuristic regression model for registration. The latter shows better accuracy but has problems with expensive computation. To improve efficiency of the coregistration approach, the author proposed a pre-qualified matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with correlation coefficient. Throughout the pre-qualification approach, the computation time was significantly improved and make the registration accuracy is improved. A prototype was implemented and tested with the proposed algorithm. The performance test of 14 TM/ETM+ images in the U.S. showed: (1) average RMSE error of the approach was 0.47 dependent upon terrain and features; (2) the number average matching points were over 15,000; (3) the time complexity was 12 min per image with 3.2GHz Intel Pentium 4 and 1G Ram.

  • PDF

Restoration of Landsat ETM+ SLC-off Gaps Using SPOT Image (SPOT 영상을 이용한 Landsat-7의 SLC-off 영상 복원)

  • Kim Hye-Jin;Yu Ki-Yun;Kim Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.229-234
    • /
    • 2006
  • On May 31, 2003. Landsat 7 experienced an anomaly causing the Scan Line Corrector(SLC) to stop functioning normally. The SLC-off causes individual scan lines to alternately overlap and then leave large gaps at the edge of the Image. A many scientists with ongoing experience using ETM+ data evaluated the scientific usability and validity of Landsat 7 products containing the SLC anomaly The best reference scene for gap-filling is the other SLC-on Landsat scene that provide same resolution, few changes, and similar data acquisition. But receiving of Landsat imagery is not stable in Korea. So SPOT image can be another alternative solution because it is a steady-state multispectral satellite image as Landsat image. In this study, we filled the SLC-off gap s of 2, 3, 4 bands using SPOT image by a local regression technique, and assigned the optimum spectral value to gaps of 1, 5, 7 bands based on a spectral adjacency. Through this process, we could restore Landsat SLC-off image and evaluated the accuracy of the results.

  • PDF

THE MODIFIED UNSUPERVISED SPECTRAL ANGLE CLASSIFICATION (MUSAC) OF HYPERION, HYPERION-FLASSH AND ETM+ DATA USING UNIT VECTOR

  • Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.134-137
    • /
    • 2005
  • Unsupervised spectral angle classification (USAC) is the algorithm that can extract ground object information with the minimum 'Spectral Angle' operation on behalf of 'Spectral Euclidian Distance' in the clustering process. In this study, our algorithm uses the unit vector instead of the spectral distance to compute the mean of cluster in the unsupervised classification. The proposed algorithm (MUSAC) is applied to the Hyperion and ETM+ data and the results are compared with K-Meails and former USAC algorithm (FUSAC). USAC is capable of clearly classifying water and dark forest area and produces more accurate results than K-Means. Atmospheric correction for more accurate results was adapted on the Hyperion data (Hyperion-FLAASH) but the results did not have any effect on the accuracy. Thus we anticipate that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but also hyperspectral images. Furthermore the cluster unit vector can be an efficient technique for determination of each cluster mean in the USAC.

  • PDF

ATMOSPHERIC CORRECTION OF LANDSAT SEA SURFACE TEMPERATURE BY USING TERRA MODIS

  • Kim, Jun-Soo;Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.864-867
    • /
    • 2006
  • Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in $R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean.

  • PDF

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Yield Response of Soybean to Drought Stress under Different Fertilizer Level

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Koh, Mun-Hwan;Kim, Young-Sook;Lee, Kyung-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.231-236
    • /
    • 2013
  • This study was conducted to investigate the yield response of soybean to drought stress in 1984 and 1986 at the experiment field of the National Academy of Agricultural Science using experiment plots with different soil water tension and fertilizer levels. The average yield response factor (YRF) of soybean to evapotranspiration (ET) calculated as [(Ya/Ym)/(ETa/ETm)], where Ya, average yield; Ym, maximum yield; ETa, average ET; and ETm, maximum ET, was 0.91 with the range from 0.74 to 1.16. Relationship between yield index (YI=[Ya/Ym]) and evapotranspiration index (ETI=[ETa/PET]) was $YI=0.87{\cdot}(ETI)+0.09$. Relationship between YI and the maximum soil water tension (Hmax) was $YI=1.23-0.23{\cdot}{\log}$ (Hmax). Relationship between YI and the days of drought stressed (Dr) was $YI=0.877{\cdot}{\exp}$ ($-0.01{\cdot}Dr$). The relation between YI and fertilizer level (F) was $YI=-0.21{\cdot}F2+0.36{\cdot}F+0.33$, under very serious drought condition as the maximum soil water tension was 0.3 MPa.

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

Basal Area Mapping using Remote Sensing and Ecological Data (원격 탐사 자료와 현장 조사 자료를 이용한 기저면적 예측 지도 제작)

  • Lee, Jung-Bin;Jayakumar, S.;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.621-629
    • /
    • 2008
  • This study was carried out in part of Tamil Nadu, India. Also, Landsat ETM+ image and field sampling data were acquired. The field data were basal area, number of trees and number of species. Using the data set, this study performed a three steps processing, (1) Image classification (2) extracting the vegetation indices(NDVI, Tasseled cap brightness, greenness and wetness) (3) mapping the prediction of biodiversity distribution using basal area and NDVI image value. Basal area was significantly correlated with NDVI. The result of classification showed 69% overall accuracy.

Land Cover Classification of a Wide Area through Multi-Scene Landsat Processing (다량의 Landsat 위성영상 처리를 통한 광역 토지피복분류)

  • 박성미;임정호;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.189-197
    • /
    • 2001
  • Generally, remote sensing is useful to obtain the quantitative and qualitative information of a wide area. For monitoring earth resources and environment, land cover classification of remotely sensed data are needed over increasingly larger area. The objective this study is to propose the process for land cover classification method over a wide area using multi-scene satellite data. Land cover of Korean peninsula was extracted from a Landsat TM and ETM+ mosaic created from 23 scenes at 100-meter resolution. Well-known techniques that used to general image processing and classification are applied to this wide area classification. It is expected that these process is very useful to promptly and efficiently grasp of small scale spatial information such as national territorial information.