• Title/Summary/Keyword: $Cu_xS(Cu_xS)$

Search Result 610, Processing Time 0.025 seconds

Superconducting Phase Formation and Properties in the Bi-Sr-Ca-Cu-O System (Bi-Sr-Ca-Cu-O 계에서 초전도체 상형성 및 특성)

  • Nam, Gung-Chan;Lee, Sang-Yun
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.543-554
    • /
    • 1996
  • Bi-Sr-Ca-Cu-O 계에서 상형성에 관해 연구하였다. 임계온도가 80K인 초전도체는 Bi-Sr-Ca-Cu의 몰비율이 2:2:1:2의 성분으로부터 solid state synthesis의 방법으로 합성하였다. 이때 이상에 대한 x-ray diffraction pattern은 모두 색인하였다. 2:2:1를 기본으로한 solid solution의 형성을 Bi2Sr2-xCa1+yCu2O8+$\delta$으로 단일상(single phase)을 형성하고 있으며, 이때 x와 y의 범위는 0

  • PDF

Magnetic hysteresis loops of the polycrystalline superconductor ${SmBa_2}{Cu_3}{O_x}$ (다결정 초전도체 ${SmBa_2}{Cu_3}{O_x}$의 자기 이력곡선)

  • Lee J. H;Jung M. S;Lee B. Y;Kim G. C;Kim Y. C;Jeong D. Y
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.84-88
    • /
    • 2004
  • The polycrystalline superconductor $SmBa_2$$Cu_3$$O_{x}$ is fabricated, and intergranular magnetic properties are investigated using the critical state model, from which some useful parameters such as the critical current density and the intergranular volume fraction are obtained. The curve fitting for M-H hysteresis loop shows that the intergranular critical current density of $SmBa_2$$Cu_3$$O_{x}$ / decreases in the form of ($1-T/T_{c}$ )$^{1.5}$ . The intergranular volume fraction is influenced by granular morphology. From SEM image, the grains of $SmBa_2$$Cu_3$$O_{x}$ are found to be randomly shaped. This mean:; that the intergranular volume fraction of $SmBa_2$$Cu_3$$O_{x}$ / should be smaller than those of superconductors, of which grains are plate-shaped such as Tl-based superconductor.

  • PDF

Characterization of $YBa_2Cu_3O_{7-x}F_y$ Superconducting Materials Made by a Sol-Gel Process (졸-겔법으로 제조한 $YBa_2Cu_3O_{7-x}F_y$ 초전도물질의 특성분석)

  • 김봉흡;강형부;김현택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.525-532
    • /
    • 1992
  • Fluorine-doped YBaS12TCuS13TOS17-xTFS1yT superconducting materials with y varing two orders of magnitude form 0.02 to 2.0 have been prepared by a sol-gel process by using metal nitrate salts, sodium hydroxide and sodium fluoride. Fluorine contents have been measured using an ion-selective electrode. All fluorine doped as reactant were found to be present in the resulted samples. From the observation of XRD it has been concluded that the samples with y 0.2 formed simply the single phase of perovskite structure, whereas those with y 0.5 yielded together some compounds such as BaFS12T, YFS13T and CuO in the resulted samples. The observation of solid state S019TF NMR has been carried out in order to check whether fluorine was actually incorporated into the lattice sites, and the experimental results revealed that the mole ratio of fluorine incorporated into the lattice sites of YBaS12TCuS13TOS17-xT was approximately 0.2 per mole of the compound. Also electrical resistivity measurement indicated that onset transition temperature has the tendency to increase slightly with increasing y in the dilute region as y 0.2.

  • PDF

Flower like Buffer Layer to Improve Efficiency of Submicron-Thick CuIn1-xGaxSe2 Solar Cells

  • Park, Nae-Man;Cho, Dae-Hyung;Lee, Kyu-Seok
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1129-1134
    • /
    • 2015
  • In this article, a study of a flower like nanostructured CdS buffer layer for improving the performance of a submicron-thick $CuIn_{1-x}Ga_xSe_2$ (CIGS) solar cell (SC) is presented. Both its synthesis and properties are discussed in detail. The surface reflectance of the device is dramatically decreased. SCs with flower like nanostructured CdS buffer layers enhance short-circuit current density, fill factor, and open-circuit voltage. These enhancements contribute to an increase in power conversion efficiency of about 55% on average compared to SCs that don't have a flower like nanostructured CdS buffer layer, despite them both having the same CIGS light absorbing layer.

Electrical and Optical Properties of Vacuum-Evaporated CdS Films for the Window Layer of $CdS/CuInSe_2$ Solar Cells. ($CdS/CuInSe_2$태양전지의 Window Layer로 쓰이는 CdS박막의 진공증착법에 따른 전기적.광학적 성질)

  • Nam, Hee-Dong;Lee, Byung-Ha;Park, Sung
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 1997
  • 1μm-CdS films for a window layer of CdS/CuInSe2 solar cell have been prepared by vacuum of 1x10-3 mTorr. Source and substrate temperature ranges were used 800-1100'C and 50-200℃ respectively. Structural, electircal and optical properties of CdS films have been investigated by X-ray diffractometer (XRD), scanning electron microscopy (SSEM), electrical resistivity, the Hall measurement and optical transmission spectra. Electrical resistivity and optical transmission of the CdS films decreased with the increase in CdS source temperature without substrate heating. All the films had hexagonal structure and strong texture with (002) orientation of grain normal to the substrate glass. CdS films evaporated at 1000℃ were the highest electrical conductivity of 0.9(S/cm). Electrical resistivity and optical transmission at the substrate temperature of 100℃ were 40(Ω,cm) and 80% respectively.

  • PDF

A Study on the Fabrications and the Principal features of Solar Cell (CdS 태양전지의 제작과 그 특성에 관하여)

  • Kim, Myeong-Gi;Hong, Chang-Hui;Choe, Bu-Gwi
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.3
    • /
    • pp.18-23
    • /
    • 1978
  • In order to improve the efficiency of Cu2-xS-CdS PN junction type solar cell, a method of reducing the series resiatance is considered. In the fabrication of the thin film of Cu2-xS, what has the largest value of conductivity is fabricated at 250 $^{\circ}C$. The thin film of CdS which has beer fabricated at the temperature 250-30$0^{\circ}C$ of the substrate and 800-85$0^{\circ}C$ of evaporating material has the largest value of conductivity and also fairly good photoelectric characteristics. Therefore, the evaporated thin aim type CdS solar cell has been fabricated at the temperature 25$0^{\circ}C$ of the substrate and 800-85$0^{\circ}C$ of the evaporating material, and its efficiency is measured to he 6%.

  • PDF

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

Structural change and electrical conductivity according to Sr content in Cu-doped LSM (La1-xSrxMn0.8Cu0.2O3) (Sr 함량이 Cu-doped LSM(La1-xSrxMn0.8Cu0.2O3)의 구조적변화와 전기전도도에 미치는 영향)

  • Ryu, Ji-Seung;Noh, Tai-Min;Kim, Jin-Seong;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • The structural change and the electrical conductivity with Sr content in $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ (LSMCu) were studied. $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ ($0.1{\leq}x{\leq}0.4$) were synthesized by EDTA citric complexing process (ECCP). A decrease in the lattice parameters and lattice volumes was observed with increase of Sr content, and these results were attributed to the increasing $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site. The electrical conductivity measured from $500^{\circ}C$ to $1000^{\circ}C$ was increased with increase of Sr content in the $0.1{\leq}x{\leq}0.3$ composition range, and it was 172.6 S/cm (at $750^{\circ}C$) and 177.7 S/cm (at $950^{\circ}C$, the maximum value) in x = 0.3. The electrical conductivity was decreased in x = 0.4 because of the presence of the second phase in the grain boundaries. The lattice volume was contracted by increase of $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site according to increase of Sr content and the electrical conductivity was increased with increase of charge carriers which were involved in the hopping mechanism.

SUPERSTRUCTURES OF Bi-Sr-Ca-Cu-O SUPERCONDUTORS (Bi-Sr-Ca-Cu-O계열 초전도체의 초구조)

  • Nam, Gung-Chan;Lee, Sang-Yun
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.268-279
    • /
    • 1994
  • The x-ray powtler pattern of single phase $Bi_2S_2CaCu_2O_{8+x}$ has been identified and fullyindexed using a pseudotetragonal subcell with a= 5.408, c = 30.83 $\AA$ and an incommensurate supercellwith reciprocal lattice vector, X$q^*$, given by $q^*=0.211b^*-c^*$. The x -ray powder pattern of the Pb-free110K superconductor phase "$Bi_2S_2CaCu_2O_{10+x}$" has many lines which belong t.o an incommensuratesupercell. Using elect.ron d~ffraction pImt.ographs as a indexing guide, an indexing scheme for the powderpattern has been obtained. The unit cell has a geometrically orthorhombic subcell a=5.411, b= 5.420, c=37.29(2) $\AA$. Supercell reflections have indices that are derived from the subcell k, 1 indices by addition uf$\pm q^*$, where $\pm q^*=0.211b^*-0.78c^*$The incommensurate con~ponent In the b dwection, $\delta$, is the same for both phases but on going from2212 to 2223 phase, the superlattic component in the c direction changes from commensurate($\varepsilon$=1) toincommensurate($\varepsilon$=0.78).X>$\varepsilon$=0.78).

  • PDF

Fabrication and Characteristics of $n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ Heterojunction Solar Cell ($n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ Heterojunction 태양전지의 제작과 특성)

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.51-55
    • /
    • 2004
  • $CdS_{0.69}Se_{0.31}$ single crystal grown by sublimation method. Hall effect measurement were carried out by the Van der Pauw method. The measurement values under the temperature were found to be carrier density $n=1.95{\times}10^{23}m^{-3}$, Hall coeffcient $RH=3.21{\times}10^{-5}m^3/c$, conductivity ${\sigma}=362.41{\Omega}^{-1}m^{-1}$, and Hall mobility ${\mu}=1.16{\times}10^{-2}m^2/v.s.$ Heterojunction solar cells of $n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ were fabricated by the substitution reaction. The open-circuit voltage, short-circuit currint density, fill factor and power conversion efficiency of $n-CdS_{0.69}Se_{0.31}/p-Cu_{2-x}S_{0.69}Se_{0.31}$ heterojunction solar cell under $80mW/cm^2$ illumination were found to be 0.41V, $19.5mA/cm^2$, 0.75 and 9.99%, respectivity.

  • PDF