• 제목/요약/키워드: $Cu^{2+}$ Complex

검색결과 458건 처리시간 0.029초

Cupric Ion Species in Cu(II)-Exchanged Mesoporous MCM-41 Gallosilicate Determined by Electron Spin Resonance Studies

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • 한국자기공명학회논문지
    • /
    • 제1권2호
    • /
    • pp.126-140
    • /
    • 1997
  • Mesoporous MCM-41 gallosilicate material was synthesized through shifting through shifting gallosilicate polymer equilibrium towards a MCM-41 phase by addition of acid. The location of Cu(II) exchanged into MCM-41 and its interaction with various adsorbate molecules were investigated by electron spin responance and electron spin echo modulation spectroscopies. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in a cylindrical channel and rotates rapidly at room temperature. Evacuation at room temperature removes three of these water molecules, leaving the Cu (II) coordinated to three water molecules and anchored to oxygens in the channel wall. Dehydration at 45$0^{\circ}C$ produces one Cu (II) species located in the inner surface of a channel as evidenced by broadening of its ESR lines by oxygen. Adsorption of polar molecules such as water, methanol and ammonia on dehydrated CuNa-MCM-41 gallosilicate material causes changes in the ESR spectrum of Cu (II), indicating the complex formation with these adsorbates. Cu (II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM data like upon water adsorption. Cu(II) also forms a complex containing four molecules of ammonia based on resolved nitrogen superhyperfine interaction.

  • PDF

Adsorbate Interactions of Cu(II) Ion-Exchanged into Mesoporous Aluminosilicate MCM-41 Analyzed by Electron Spin Resonance and Electron Spin Echo Modulation

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • 한국자기공명학회논문지
    • /
    • 제3권2호
    • /
    • pp.109-126
    • /
    • 1999
  • The location of Cu(II) exchanged into measoporous aluminosilicate MCM-41(AlMCM-41) material and its interaction with various adsorbate molecules were investigated by electron spin resonance and electron spin echo modulation spectroscopies. Cu(II) is fully coordinated to adsorbates in a wide open mesopore of AlMCM-41 for the formation of favorable complexes. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules as evidenced by an isotropic room temperature ESR signal. This species is located in a cylindrical MCM-41 channel and rotates rapidly at room temperature. Evacuation at room temperature removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to oxygens in an MCM-41 channel wall. Dehydration at 450$^{\circ}C$ produces one Cu(II) species located on the internal wall of a channel, which is easily accessible to adsorbates. Adsorption of adsorbate molecules such as water, methanol, ammonia, pyridine, aniline, acetonitrile, benzene, and ethylene on a dehydrated Cu-AlMCM-41 material causes changes in the ESR spectrum of Cu(II), indicating the complex formation with these adsorbates. Cu(II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM analysis like upon water adsorption. Cu(II) also forms a square planar complex containing four molecules of N-containing adsorbates such as ammonia, pyridine and aniline based on resolved nitrogen superhyperfine interaction and their ESR parameters. However, Cu(II) forms a complex with six-molecules of acetonitrile based on ESR parameters. Only one molecule of benzene or ethylene is coordinated to Cu(II).

  • PDF

Crystal Structures and Characterization of Copper(II) Complexes of N,N,N'N'-Tetrakis(2-pyridylmethyl)-1,2-ethanediamine

  • Yoon, Doo-Cheon;Lee, Uk;Oh, Chang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권6호
    • /
    • pp.796-800
    • /
    • 2004
  • The structure of [Cu(tpen)]$(ClO_4)_2$ (tpen = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethanediamine) has been identified by X-ray crystallography. The copper(II) ion is surrounded by two amine N atoms and three pyridine N atoms of the ligand, making a distorted trigonal-bipyramid. Among the six potential N donor atoms (two amine N and four pyridine N atoms), only one pyridine N atom remains uncoordinated. We examined structural changes on addition of $Cl^-$ to $[Cu(tpen)]^{2+}$(1). The addition of $Cl^-$ in methanol resulted in the formation of a novel dinuclear copper(II) complex $[Cu_2Cl_2(tpen)](ClO_4)_2{\cdot}H_2O$. The structure of the dinuclear complex was verified by X-ray crystallography. Each copper(II) ion in the dinuclear complex showed a distorted square planar geometry with two pyridine N atoms, one amine N atom and one $Cl^-$ ion.

$[Cu(L)]I_2\cdot2H_2O(L: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18},0^{7.12}$docosane) 착물의 합성 및 구조 (Preparation and Structure of $[Cu(L)]I_2\cdot2H_2O(L: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18},0^{7.12}$]docosane))

  • 최기영;김동운;서일환
    • 한국결정학회지
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 1998
  • [Cu(L)]I2, 2H2o(1) (L:3,14-Dimethyl-2,6,13,17-tetrazatricyclo[14,4,01.18, 07.12] docosane) 착물을 합성하고 구조를 규명하였다. 이 착물은 삼사정계, 공간군 P1, a=8.400(1)Å, b=8.986(3) Å, c=9.156(1) Å, α=82.42(1)˚, β=73.61(1)˚ λ=81.04(2)˚, Z=1로 결정화되었으며, 최종 신뢰도 R값은 288K에서 1926개 회석반점에 대하여 0.042이었다. 이 착물의 결정구조는 평면 사각구조를 갖고 Cu-N의 평균 거리는 2.029(11)Å이었다. 이 착물의 육면 고리가 오면 고리는 RRSS 배역을 갖는 이차 NH와 함께 각각 의자 형태와 고우시 형태를 갖는다.

  • PDF

Cupric Complexes Produced from the Reaction of Cupric Nitrate Trihydrate with S-2-Pyridyl Thioates

  • Choi, Young-Nam;So, Hyun-Soo;Lee, Jae-In;Kim, Sung-Gak
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권5호
    • /
    • pp.385-388
    • /
    • 1986
  • The reaction of cupric nitrate trihydrate with S-2-pyridyl thioates in acetonitrile was studied. The major products were the corresponding carboxylic acids and $[Cu(NO_3)(C_5H_4NS)(C_5H_5NS$)] (Complex A). Sometimes $[Cu(NO_3)(C_5H_4NS)(H_2O$)] was also obtained in addition to Complex A. When Complex A was recrystallized in dimethylsulfoxide, $[Cu(NO_3)(C_5H_4NS)(C_5H_5NS)$ {$(CH_3)_2SO$}$_2]{\cdot}2H_2O$ was crystallized. The structures of these copper complexes and the role of cupric nitrate in the hydrolysis of S-2-pyridyl thioates are discussed.

Synthesis, Crystal Structure and Characterization of Cu(II) and Cd(II) Coordination Compounds Based on Ligand 2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)acetic Acid

  • Zhang, Ya-Jun;Wang, Cui-Juan;Mao, Kai-Li;Liu, Xiao-Lei;Huang, Shuai;Tong, Yan;Zhou, Xian-Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2086-2092
    • /
    • 2014
  • Two novel coordination compounds $[Cu_2(pypya)_3(H_2O)_2]{\cdot}Cl{\cdot}(H_2O)_5$ (1) and $\{[Cd(pypya)(ta)_{1/2}]{\cdot}H_2O\}_n$ (2) (Hpypya=2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)acetic acid, $H_2ta$=terephthalic acid) were synthesized and characterized by single X-ray diffraction. Structure determination reveals that complex 1 and complex 2 crystallize in the triclinic system, with the P-1 space group. The asymmetric unit of 1 contains two Cu(II) ions, and their coordination modes are different. These units of complex 1 are linked together via hydrogen bonds and ${\pi}-{\pi}$ interactions, and the 3D structure of complex 1 was formed. Complex 2, a mononuclear Cd(II) coordination compound, has a 2D structure which was constructed via coordination bonds. TGA and fluorescence spectra analysis of complex 1 and complex 2 have also been studied. In addition, the geometry parameters of complex 1 have been optimized with the B3LYP method of density functional theory (DFT) to explain its coordination behavior. The electronic properties of the complex 1 and ligand Hpypya have been investigated based on the nature bond orbital (NBO) analysis at the B3LYP level of theory. The result verifies that the synergistic effect have occurred in the compound.

정사면체 구조를 갖는 Cu(II) 착물과 수은(II) 및 수은(0)과의 금속 교환반응 연구 (Studies on the Metal-Exchange Reaction of Tetrahedral Cu(II) Complex with Mercuric Ion and Mercury Metal)

  • 공영태;최성락;심윤보
    • 대한화학회지
    • /
    • 제36권2호
    • /
    • pp.223-229
    • /
    • 1992
  • 정사면체 구조를 갖는 $SpCuCl_2$와 수은(II) 이온 및 수은 금속간의 금속 교환반응의 속도론적인 연구를 순환 전압전류법과 자외 가시선 분광법을 사용하여 실험하였다. 수은(II) 이온 및 수은 금속과$SpCuCl_2$와의 교환 반응은 유사일차속도식을 따른다. 교환반응의 속도상수와 활성화 계수들의 값을 구하고 이들을 정리하여 나타내었다. 이러한 실험결과들로부터 Sp 배위자에 동시에 결합되어 있는 구리와 수은의 이핵 착물에서 구리와 질소간의 결합이 끊어지는 과정이 교환반응의 속도결정단계임을 알 수 있다.

  • PDF

분광광도법에 의한 8-(p-Ethylbenzenesulfonamido) quinoline과 구리와의 착물에 관한 연구 (Spectrophotometric Study on the Complex of the Copper by 8-(p-Ethylbenzenesulfonamido) quinoline)

  • 이흥낙;박영규;이철희
    • 대한화학회지
    • /
    • 제15권6호
    • /
    • pp.378-384
    • /
    • 1971
  • A new analytical reagent 8-(p-ethylbenzenesulfonamido)quinoline(EBSQ) has been synthesized, and identified its structure. EBSQ forms copper chloroform-soluble complex in a basic solution (pH = 7.5∼10.5). The other optimum conditions for the spectrophotometric study of Cu-EBSQ have been established at 380 $m{\mu}$. Beer's law is followed in the concentration range of 0~44.5 ${\mu}g$ per 10 ml of chloroform. The composition of complex has been found to be $Cu(EBSQ-H)_2$and the over-all instability constant is calculated to be $1.22{\times}10^{-7}$. The absorption coefficient of the $Cu(EBSQ-H)_2$ complex is ${\varepsilon}$ = 15,800.

  • PDF

NiCuZn 페라이트의 조성 및 소결조건에 따른 전자파흡수 특성에 관한 연구 (A Study on the Electromagnetic Wave Absorption Properties by the Composition Ratio and Sintering Condition of NiCuZn Ferrite)

  • 이영구;박찬규;이문수
    • 한국정보통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.994-1000
    • /
    • 2001
  • 정보통신기술의 발달과 전자기기의 사용량 증가에 따른 전자파장애의 발생이 점차 사회 문제화되면서 그 대책이 요구됨에 따라 전자파 흡수체에 대한 관심도 증가되고 있는데 본 연구에서는 전자파 흡수체로 알려진 NiCuZn 페라이트의 조성비 및 소결온도 변화에 따른 복소유전율과 복소투자율의 주파수 의존 특성을 알아보고 전자파 흡수성능에 대한 영향을 조사하였다. NiCuZn 페라이트의 조성 중 $Fe_2O_3$및 ZnO를 각각 49.0, 34.0mol%로 고정하고 NiO 및 CuO의 구성비를 변화시켜 측정한 결과 NiO의 구성비가 8.5~9.5 mol%의 범위에서, 소결온도는 $1080^{\circ}C$에서 초투자율 및 유전율이 크고 $loss tangent(=\mur"/\mur')$가 약 2 MHz~9.5 GHz 주파수 대역에서 1 이상을 보이며 전파흡수 성능이 가장 우수하게 나타났다.나타났다.

  • PDF

Structure of a Copper(Ⅱ) Hexaazamacrotricyclic Complex : (1,3,6,9,11,14-Hexaazatricyclo[12.2.1.16,9]octadecane)-copper(Ⅱ) Perchlorate

  • Cheon Manseog;Suh Paik Myunghyun;Shin Whanchul
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권4호
    • /
    • pp.363-367
    • /
    • 1992
  • The crystal structure of (1,3,6,9,11,14-hexaazatricycol[12.2.1.$1^{6,9}$]octadecane)copper(Ⅱ) perchlorate, Cu($C_{12}H_{26}N_6$)$(ClO_4)_2$, has been determined by the X-ray diffraction methods. The crystal data are as follows: Mr=516.9, triclinic, ${\alpha}=8.572\;(2)$, b=8.499 (3), c=15.204 (3) ${\AA}$, ${\alpha}=80.42\;(5),\;{\beta}=73.57\;(3),\;{\gamma}=69.82\;(4)^{\circ},\;V=994.2\;{\AA}^3,\;D_C=1.726\;gcm^{-3}$, space group $P{\tilde{1}},\;Z=2,\;{\mu}=21.27\;cm^{-1}&, F(000)=534 and T=297 K. The structure was solved by direct methods and refined by full-matrix least-squares methods to and R value of 0.081 for 1608 observed reflections measured with graphite-mono-chromated Mo Ka radiation on a diffractometer. There are two independent complexes in the unit cell. The two copper ions lie at the special positions (1/2, 0, 0) and (0, 1/2, 1/2)and each complex possesses crystallographic center of symmetry. Each Cu ion is coordinated to four nitrogen donors if the hexaazamacrotricyclic ligand and weakly interacts with two oxygen atoms of the perchlorate ions to form a tetragonally distorted octahedral coordination geometry. The Cu_N (sec), Cu_N(tert) and Cu_O coordination distances are 1.985 (14), 2.055 (14) and 2.757 (13) ${\AA}$ for the complex A and 1.996 (10), 2.040 (11) and 2.660 (13) ${\AA}$ for the complex B, respectively. The macrocycles in the two independent cations assume a similar conformation with the average r.m.s. deviation of 0.073 ${\AA}$. Two 1,3-diazacyclopentane ring moieties of the hexaazamacrotricyclic ligand are placed oppositely and almost perpendicularly to the square coordination plane of the ruffled 14-membered macrocycle. The secondary N atoms are hydrogen-bonded to the perchlorate O atoms with distances of 3.017 (23) and 3.025 (19) ${\AA}$ for the complexes A and B, respectively.