• 제목/요약/키워드: $Cu(In,Ga)Se_2$

검색결과 266건 처리시간 0.03초

Characterization of Cu(In1-x,Gax)Se2 Thin film Solar Cell by Changing Absorber Layer

  • 김살롬;김기림;김민영;김종완;손경태;임동건
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.314.2-314.2
    • /
    • 2013
  • CIGS 박막의 물성은 조성에 크게 영향을 받으며, 특히 박막 내 Cu/(In+Ga) 비는 매우 중요한 변수로서 태양전지 특성에 영향을 주게 된다. Cu(In1-xGax)Se2 박막의 전하농도 및 반도체로의 성격을 가장 명확하게 결정하는 조성비는 Cu/(In+Ga) 비이다. 태양전지와 같은 소자로 작용하기 위해서는 Cu/(In+Ga) 비가 1보다 작아야 한다. 고효율의 태양전지는 Cu/(In+Ga)조성이 0.85~0.95로 slightly Cu-poor가 되어야 만들어진다. 본 연구에서는 Cu조성에 따른 CIGS 박막의 구조적, 전기적 특성과 CIGS 태양전지 효율 특성에 관하여 연구하였다. 미세구조 분석결과 Cu 조성이 증가함에 따라 큰 결정립을 가지며 결정립의 성장이 고르게 되어 접합 형성을 좋게 하는 경향을 보였다. X선 회절 분석결과, Cu 함유량 비율이 증가하면서 <112>의 우선배향성에서 <220/204>으로 변화하였다. 그러나, Cu/(In+Ga) 비율이 1이상이 첨가됨에 따라 우선배향은 다시 <112>로 변화함을 알 수 있었다. EDX 분석결과 Ga/(In+Ga) 0.31, Cu/(In+Ga) 0.86의 비율일 때, Carrier density $1.49{\times}1016$ cm-3을 나타내었다. CIGS의 태양전지의 효율 측정결과 Voc=596mV, Jsc=37.84mA/cm2, FF=72.96%로 ${\eta}$=16.47%를 달성하였다.

  • PDF

태양전지 광흡수층용 $CuInGaSe_2$ 나노입자 합성 (Synthesis of $CuInGaSe_2$ Nanoparticles for Absorber Layer of Solar Cell)

  • 김기현;전영갑;윤경훈;박병옥
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.231-231
    • /
    • 2003
  • I-III-Ⅵ족 CuInGaSe$_2$(CIGS)계 화합물 태양전지는 1 eV 이상의 직접 천이형 에너지 밴드갭을 가지며, 전기 광학적으로 매우 안정하여 태양전지의 광흡수층으로 매우 이상적이다. CIGS 광흡수층제조를 위하여 용매열법 (solvothermal method)으로 CIGS나노입자를 합성하였다. 용매열법은 진공장비를 사용하던 기존의 방법에 비해 저온, 저압에서 저가로 합성할 수 있다는 장점을 가지고 있다. Copper, indium selenium 및 gallium 분말과 유기용매 ethylenediarnine을 autoclave안에서 반응시켜 CIGS 나노입자를 제조하였다. 280 에서 14시간동안 반응시켜 직경이 30-80 nm인 구형에 가까운 CIGS 나노입자를 얻었다. 이것은 용매열법에 의한 4성분계의 CIGS 나노입자의 최초 합성이다. diehyleneamine을 용매로 사용한 경우에 한하여 구형의 CIS 입자를 합성할 수 있다고 보고되었으나, Cu와 이중 N-chelation이 형성되는 ethylenediamine 용매임에도 불구하고 구형의 CIGS 나노분말이 형성된 것은 solution-liquid-solid (SLS) 기구로 설명할 수 있었다. HRSEM, TEM, XRD. EDS으로 나노분말의 형상 크기 및 조성을 조사하여 chalcopyrite 구조의 CuInGaSe$_2$ 임을 확인하였다.

  • PDF

Se-coated Cu-Ga-In 금속전구체 셀렌화 반응메카니즘 연구

  • 김우경;구자석;박현욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • 광전환 효율 20% (AM1.5G) 이상의 고효율 화합물 박막태양전지의 광흡수층으로 많은 관심을 받고 있는 $Cu(In,Ga)Se_2$ (CIGS) 태양전지의 광흡수층은 다양한 공정에 의해 제조가 가능하다. 현재 고효율 CIGS 셀 생성을 위해 널리 사용되고 있는 CIGS 흡수층 성장공정은 "co-evaporation (동시증발법)"과 2-step 공정이라 불리는 "precursorselenization(전구체-셀렌화)" 방법이다. 동시증발법은 개별원소 Cu, In, Ga, Se들을 고진공 분위기에서 고온(550~600$^{\circ}C$) 기판위에 증착하는 방법으로 소면적에서 가장 좋은 효율(~20%)을 보이는 공정이다. 하지만, 고온, 고진공 공정조건과 대면적 증착시 온도 및 조성 불균일 등의 문제점 등으로 상용화에 어려움이 있다. 전구체-셀렌화 공정은 1단계에서 다양한 방식(예: 스퍼터링, 전기도금, 프린팅 등) 방식으로 CuGaIn 전구체를 증착하고, 2단계에서 고온(550~600$^{\circ}C$)하에 H2Se gas 혹은 Se vapor와 반응시켜 CIGS를 생성한다. 일본의 Showa Shell와 Honda Soltec 등에 의해 이미 상업화 되었듯이, 저비용 대면적으로 상업화 가능성이 높은 공정으로 평가되고 있다. 하지만, 2단계에서 사용되는 H2Se 및 Se vapor의 유독성, 기상 Se과 금속전구체 간의 느린 셀렌화 반응속도, 셀렌화반응 후 생성된 CIGS 박막 두께방향으로의 Ga 불균일 분포, 생성된 CIGS/Mo 계면 접착력 저하 등의 문제점들이 개선, 해결되어야만 상업화에 성공할 수 있을 것이다. 본 연구에서는 Se layer가 코팅된 금속전구체의 셀렌화 반응메카니즘을 in-situ high-temperature XRD를 이용하여 연구하였다. 금속전구체는 스퍼터링, 스프레이 등 다양한 방법으로 제조되었고, 반응메카니즘 연구결과를 바탕으로 Se 코팅된 금속전구체를 이용한 급속열처리 공정의 최적화를 시도하였다.

  • PDF

Preparation of a Dense Cu(In,Ga)Se2 Film From (In,Se)/(Cu,Ga) Stacked Precursor for CIGS Solar Cells

  • Mun, Seon Hong;Chalapathy, R.B.V.;Ahn, Jin Hyung;Park, Jung Woo;Kim, Ki Hwan;Yun, Jae Ho;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2019
  • The $Cu(In,Ga)Se_2$ (CIGS) thin film obtained by two-step process (metal deposition and Se annealing) has a rough surface morphology and many voids at the CIGS/Mo interface. To solve the problem a precursor that contains Se was employer by depositing a (In,Se)/(Cu,Ga) stacked layer. We devised a two-step annealing (vacuum pre-annealing and Se annealing) for the precursor because direct annealing of the precursor in Se environment resulted in the small grains with unwanted demarcation between stacked layers. After vacuum pre-annealing up to $500^{\circ}C$ the CIGS film consisted of CIGS phase and secondary phases including $In_4Se_3$, InSe, and $Cu_9(In,Ga)_4$. The secondary phases were completely converted to CIGS phase by a subsequent Se annealing. A void-free CIGS/Mo interface was obtained by the two-step annealing process. Especially, the CIGS film prepared by vacuum annealing $450^{\circ}C$ and subsequent Se annealing $550^{\circ}C$ showed a densely-packed grains with smooth surface, well-aligned bamboo grains on the top of the film, little voids in the film, and also little voids at the CIGS/Mo interface. The smooth surface enhanced the cell performance due to the increase of shunt resistance.

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • 이은우;박순용;이상환;김우남;정우진;전찬욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Cu(In,Ga)Se2 태양전지 연구 동향과 중장기 개발 방향 (Research Trends and Mid-&Long-term Development Directions of Cu(In,Ga)Se2 Solar Cells)

  • 김기환;윤재호
    • 공업화학전망
    • /
    • 제20권2호
    • /
    • pp.1-12
    • /
    • 2017
  • Cu(In,Ga)Se2 (CIGS)계 박막 태양전지 기술은 1970년대 처음으로 소개된 이래 지속적인 기술적 진보를 이루어 왔으며, 저가·고안정성·고효율이라는 다양한 장점으로 태양광 시장에서 성공적인 안착을 노리고 있다. 이 논문은 CIGS 박막 태양전지의 개발 이력 및 요소 기술에 대해서 살펴보고 국가별 연구·개발 활동에 대해서 약술하였다. 아울러, 앞으로의 사회·시장에 변화에 대응한 연구 개발 방향에서 대해서도 논하였다.

반응성 스퍼터의 Se Cracker Reservoir Zone 온도에 따른 특성분석

  • 김주희;박래만;김제하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.585-585
    • /
    • 2012
  • $Cu(In_{1-x}Ga_x)Se_2$(CIGS) 박막 태양전지는 Chalcopyrite 계 박막 태양전지로 Cu, In, Ga, Se 각 원소의 조성을 적절히 조절하여 박막을 성장시킨다. 성장시킨 CIGS 박막은 광흡수계수가 $10^5cm^{-1}$로 다른 물질보다 뛰어나고 직접 천이형 반도체로서 얇은 두께로도 고효율의 박막 제작이 가능하다. CIGS 태양전지를 제조하는 방법은 3-stage 동시 증착법, 금속 전구체의 셀렌화 공정법, 전기 증착법 등이 있다. 그 중에 금속 전구체의 셀렌화 공정법은 다른 제조 방법에 비해 대면적 생산에 유리한 장점이 있다. 하지만 아직 상대적으로 3-stage 동시 증착법에 비해 낮은 에너지 변환 효율이 보고된다. 본 실험에서는 기존의 금속 전구체의 셀렌화 공정법과는 달리 전구체 증착과 셀렌화 공정을 동시에 하고, Se cracker를 통하여 Se 원료를 주입하는 방식인 반응성 스퍼터링 공정에서 reservoir zone의 온도 변화에 따른 특성을 분석하였다. Se cracker의 reservoir zone 온도가 증가할수록 Cu/(In+Ga) 비가 증가한다. CIGS 박막 태양전지의 구조는 Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/Soda lime glass이다. CIGS 박막의 조성비가 Cu/(In+Ga)=0.89, Ga/(In+Ga)=0.17인 박막 태양전지에서 개방전압 0.34 V, 단락전류밀도 $32.61mA/cm^2$, 충실도 56.2% 그리고 변환 효율 6.19%를 얻었다. 본 연구는 2011년도 지식경제부의 재원으로 한국에너지 기술평가원(KTEP)의 지원을 받아 수행한 연구 과제입니다(No.20093020010030).

  • PDF

Cu-In-Ga 금속 전구체의 셀렌화 공정시 발생하는 Ga-segregation 억제에 관한 연구

  • 문동권;안세진;윤재호;곽지혜;조아라;안승규;신기식;윤경훈;이희덕
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.46.2-46.2
    • /
    • 2011
  • CuInSe2 (CIS)계 화합물은 3족 원소(Ga, Al) 또는 6족 원소(S)를 첨가하여 밴드갭 조절이 가능하다는 장점을 가지고 있다. 실제로 동시 증발법으로 Ga을 첨가하여 만든 CuIn0.7Ga0.3Se2(CIGS) 태양전지는 약20%의 높은 효율 보이고 있다. 그러나 최고 효율을 달성한 동시 증발법은 대면적화가 어렵다는 점이 상용화의 걸림돌로 작용하고 있다. 따라서, 그 대안으로 대면적화가 용이한 스퍼터링 및 셀렌화 공정 연구가 진행되고 있다. 그러나 스퍼터링/셀렌화 공정은 Cu-In-Ga 금속 전구체의 셀렌화 시 Ga이 Mo쪽으로 이동하여 CIS/CGS 2개의 상으로 형성된다는 큰 단점을 갖고 있다. 이를 해결하기 위해 셀렌화 후 다시 H2S 기체 분위기에서 열처리하여 표면 밴드갭을 증가시키는 공정이 사용되고 있으나, 이는 열처리 과정이 2번 필요하다는 단점을 갖고 있다. 이러한 단점을 해결하고자 본 연구에서는 금속 전구체의 구조, 셀렌화 공정 조건 및 전구체 내의 상(phase) 조절을 통해 셀렌화 시 Ga segregation을 억제하고자 하였다. 특히 전구체의 상 조절을 통해서 Ga의 이동을 크게 완화시킬 수 있음을 확인하였다.

  • PDF

Performance Improvement by Controlling Se/metal Ratio and Na2S Post Deposition Treatment in Cu(In,Ga)3Se5 Thin-Film Solar cell

  • Cui, Hui-Ling;Kim, Seung Tae;Chalapathy, R.B.V.;Kim, Ji Hye;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.103-110
    • /
    • 2019
  • Cu(In,Ga)3Se5 (β-CIGS) has a band gap of 1.35 eV, which is an optimum value for high solar-energy conversion efficiency. The effects of Cu and Ga content on the cell performance were investigated previously. However, the effect of Se content on the cell performance is not well understood yet. In this work, β-CIGS films were fabricated by three-stage co-evaporation of elemental sources with various Se fluxes at the third stage instead of at all stages. The average composition of five samples was Cu1.05(In0.59,Ga0.41)3Sey, where the stoichiometric y value is 5.03 and the stoichiometric Se/metal (Se/M) ratio is 1.24. We varied the Se/metal ratio in a range from 1.18 to 1.28. We found that the best efficiency was achieved when the Se/M ratio was 1.24, which is exactly the stoichiometric value where the CIGS grains on the CIGS surface were tightly connected and faceted. With the optimum Se/M ratio, we were able to enhance the cell efficiency of a β-CIGS solar cell from 9.6% to 12.0% by employing a Na2S post deposition treatment. Our results indicate that Na2S post deposition treatment is very effective to enhance the cell efficiency to a level on par with that in α-CIGS cell.