• Title/Summary/Keyword: $Co_3O_4$/$Al_2O_3$

Search Result 559, Processing Time 0.028 seconds

Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method (침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성)

  • 김준태;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

Synthesis and Characterization of CoAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing (역-마이셀 공정에 의한 CoAl2O4 무기안료 나노 분말의 합성 및 특성)

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.370-374
    • /
    • 2014
  • Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. $CoAl_2O_4$ nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of $Co(NO_3)_2$ and $Al(NO_3)_3$). The $CoAl_2O_4$ was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and $1,200^{\circ}C$ for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized $CoAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized $CoAl_2O_4$ powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.

Optimization of $Nd^{3+}$ ion co-doping in $CaAl_2O_4:\;Eu^{2+}$ blue phosphor ($CaAl_2O_4:Eu^{2+}$ 청색(靑色) 형광체(螢光體)의 $Nd^{3+}$ 도핑 최적화(最適化)에 관한 연구(硏究))

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.46-50
    • /
    • 2007
  • Blue phosphor calcium aluminate, $CaAl_2O_4:Eu^{2+}$ co-doped with $Nd^{3+}$ was prepared by solid state synthesis method. Phosphor materials with 1 mol% $Eu^{2+}$ and varying compositions of $Nd^{3+}$ show high brightness and long persistent luminescence. The synthesized phosphor materials were investigated by powder x-ray diffraction (XRD), SEM, TEM, photoluminescence excitation and emission studies. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}:Nd^{3+}$ was observed in the blue region (${\lambda}_{max}=440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. $Nd^{3+}$ ion doping in the phosphor results in long afterglow phosphorescence when the excitation light is cut off.

Preparation and characterization of CoAl2O4 blue ceramic nano pigments by attrition milling (어트리션밀을 이용한 CoAl2O4 나노 무기 안료의 제조 및 특성 평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.255-264
    • /
    • 2013
  • Cobalt aluminate ($CoAl_2O_4$) is a highly stable pigment with excellent resistance to light, weather, etc., which has resulted in widespread use as a ceramic pigment. Due to the unique optical characteristics, $CoAl_2O_4$ is generally used as a coloring agent to decorate porcelain products, glass, paints and plastics. Here, $CoAl_2O_4$ pigments were synthesized by polymerized complex method and solid state reaction. Then $CoAl_2O_4$ pigment were grinded using the attrition milling with 1 mm size zirconia ball for 3 hours. The attrition milling process was performed at the constant speed of 800 rpm and ball to powder weight ratio (BPR) was 100 : 1. The characteristics of synthesized pigment were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), particle size analyser (PSA) and CIE $L^*a^*b^*$. The XRD patterns of $CoAl_2O_4$ show single phase spinel structure. The particle size of $CoAl_2O_4$ measured by FE-SEM, TEM and PSA analysis was in the range of 100~200 nm. The blue color of obtained $CoAl_2O_4$ pigments could be confirmed through CIE $L^*a^*b^*$ measurement.

Synthesis of Tialite Ceramic Pigments and Coloring in Glazes (Tialite계 세라믹 안료의 합성 및 유약에서의 발색)

  • Kim, Yeon-Ju;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.450-455
    • /
    • 2011
  • [ $Al_2TiO_5$ ]has a high refractive index and good solubility of the chromophore in the $Al_2TiO_5$ lattice, which allows this structure to be a good candidate for the development of new ceramic pigments. However, pure $Al_2TiO_5$ is well known to decompose on firing at $900{\sim}1100^{\circ}C$. However, this process can be inhibited by the incorporation of certain metal cations into its crystalline lattice. In this study, the synthesis of gray ceramic pigment was performed by doping cobalt on the $Al_2TiO_5$ crystal structure. The $Al_2TiO_5$ was synthesized using $Al_2O_3$ and $TiO_2$, and doped with $Co_3O_4$ as a chromophore material. In order to prevent the thermal decomposition during the cooling procedure, MgO was added to samples by 0.05 mole, 0.1 mole, and 0.15 mole as a stabilizer. The samples were fired at $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigment were analyzed using XRD, Raman spectroscopy, UV, and UV-vis. $Al_2O_3$ was available for the formation of $CoAl_2O_4$, which should also be considered in order to explain the small amount of this phase detected in the sample with the higher $Co^{2+}$ content (${\geq}$ 0.03 mole). It was found that the solubility limit of $Co^{2+}$ in the $Al_2TiO_5$ crystal was 0.02 mole% through an analysis of Raman spectroscopy. Through the addition of a pigment with 0.02 mole% of $Co^{2+}$ to lime-barium glaze, stabilized gray color pigments with 66.54, -2.35, and 4.68 as CIE-$L^*a^*b^*$ were synthesized.

Coating and Characterization of Al2O3-CoO Thin Films by the sol-gel Process (졸-겔법을 이용한 Al2O3-CoO계 박막의 제조와 특성에 관한 연구)

  • Shim, Moonsik;Lim, Yongmu
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.123-128
    • /
    • 1999
  • This paper reports the preparation and characterization of colored coatings of $Al_2O_3$-CoO. Films of 25mol% CoO doped $Al_2O_3$, have been prepared on soda-lime-silica slide glasses by the sol-gel process from Al-alkoxide and Co-nitrate. The films have been characterized by a photospectroscopy and hardness tester. The color, spectral reflectance and spectral transmittance of the films was expressed in Lab color chart and on spectra plot. Microhardness of the films increased with increasing of the heating temperature. Transmittance and reflectance of the films decreased with increase of the heating temperature and coating times. The coating films showed various light-yellow, deep-yellow, greenish-yellow color as a function of the coating times and heating temperature.

  • PDF

Stability of ZnAl2O4 Catalyst for Reverse-Water-Gas-Shift Reaction (RWGSR)

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.86-90
    • /
    • 2003
  • Reverse-Water-Gas-Shift reaction (RWGSR) was carried out over the ZnO, $Al_2O_3,\;and\;ZnO/Al_2O_3$ catalysts at the temperature range from 400 to 700 ℃. The ZnO showed good specific reaction activity but this catalyst was deactivated. All the catalysts except the $ZnO/Al_2O_3$ catalyst (850 ℃) showed low stability for the RWGSR and was deactivated at the reaction temperature of 600 ℃. The $ZnO/Al_2O_3$ catalyst calcined at 850 ℃ was stable during 210 hrs under the reaction conditions of 600 ℃ and 150,000 GHSV, showing CO selectivity of 100% even at the pressure of 5 atm. The high stability of the $ZnO/Al_2O_3$ catalyst (850 ℃) was attributed to the prevention of ZnO reduction by the formation of $ZnAl_2O_4$ spinel structure. The spinel structure of $ZnAl_2O_4$ phase in the $ZnO/Al_2O_3$ catalyst calcined at 850 ℃ was confirmed by XRD and electron diffraction.

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Mechanical Properties of the Ceramics of the System Al2O3-ZrO2-Y2O3 Prepared by the Precipitation Method (침전법에 의한 Al2O3-ZrO2-Y2O3계 세라믹스의 기계적 특성)

  • 김준태;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.364-372
    • /
    • 1988
  • The mechanical properties and microstructure of ceramics of the system Al2O3-ZrO2-Y2O3 sintered at 1$650^{\circ}C$ for 2h after powder preparation by the precipitation method from Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were investigated. The Al2O3-ZrO2-Y2O3 ceramics sintered at 1$650^{\circ}C$ for 2h after mixing alpha-Al2O3 and ZrO2-Y2O3 powders, both were separately precipitated and calcined, were found to have the relative density higher than 97.5% so that the strengthening and toughening mechanisms could be explained mainly as the stress-induced phase transformation. On the other hand, the sintered bodies prepared by co-precipitating the three starting materials were measured to have the relative density lower than 85% so that the degradation of strength were observed above 15 vol% ZrO2 contents due to the high porosity by which the effect of stress-induced phase transformation was assumed to be depressed.

  • PDF