• Title/Summary/Keyword: $Co_2Z$ ferrite

Search Result 16, Processing Time 0.026 seconds

The effect of $Co_{3}O_{4}$additives on the magnetic Properties of $Ni_{0.8-xZn_{0.2+x}Fe_{2}O_4}$ ($Co_{3}O_{4}$첨가제 변화에 따른 $Ni_{0.8-xZn_{0.2+x}Fe_{2}O_4}$의 자기적 특성)

  • 이선학;오영우;김덕훈;김현식;이해연;송재성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.331-334
    • /
    • 2001
  • In this study, the magnetic properties for Ni-Zn ferrite were investigated as the function of $Co_3$ $O_4$ additive contents which was predicted to improve the resonance frequency. Toroid specimens with the composition of N $i_{0.8-x}$Z $n_{0.2+x}$F $e_2$ $O_4$(x = 0, 0.05, 0.1, 0.15) ferrites were preparation by conventional ceramic processing technique. The maximum resonance frequency of 19.905 MHz and the permeability of 90.88 in 10 MHz were attained to the N $i_{0.8}$Z $n_{0.2}$F $e_2$ $O_4$with $Co_3$ $O_4$0.3 wt%. Both of the permeability in 10 MHz and the resonance increased to 107.11 and 19.005 MHz respectively for the N $i_{0.8}$Z $n_{0.2}$F $e_2$ $O_4$with $Co_3$ $O_4$wt% than the N $i_{0.8}$Z $n_{0.2}$F $e_2$ $O_4$/ with the free $Co_3$ $O_4$composition.composition.

  • PDF

Structure and Magnetic Properties on Synthesis Route of Co2Z-type Barium Hexaferrite (Co2Z-type Barium Hexaferrite의 합성방법에 따른 결정구조 및 자기적 특성)

  • Baek, In Seung;Nam, In Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • $Co_2Z$-type barium ferrites ($Ba_3Co_2Fe_{24}O_{41}$) were synthesized using variation method. First, M-type, $Co_2Y$-type and $Co_2Z$-type synthesized by hydrothermal method. Second, M- and Y-type precursors for synthesis of $Co_2Z$ hexaferrite by hydrothermal and ball milling method. the morphology, structure and magnetic properties of the barium ferrite particles were characterized using XRD, FESEM, VSM, impedance. As a result, Single phase of M-type and $Co_2Y$-type were obtained. Manufactured powders of M+Y ball milling, M+Y hydrothermal were similar to single phase of $Co_2Z$-type hexaferrite, all powders were obtained theoretical magnetization (50 emu/g). The largest initial permeability were obtained $Co_2Z$ hexaferrite synthesized by reagent precusor, With increasing calcination temperature was lowered the initial permeability. In another synthesis didn't almost that little change could be found.

Effects of Magneto-Dielectric Ceramics for Small Antenna Application

  • Kim, Jae-Sik;Lee, Young-Hie;Lee, Byungje;Lee, Jong-Chul;Choi, Jin Joo;Kim, Jin Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.273-279
    • /
    • 2014
  • Hexagonal Ba-ferrites are widely suggested as materials for small antennas. In this paper, the sintering behavior and magneto-electric properties of $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ ($0.1{\leq}x{\leq}0.5$) ceramics were investigated for small antenna application. All samples of $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ ceramics were prepared by the solid-state reaction method and sintered at $1250^{\circ}C$. From the XRD patterns of the sintered $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ceramics, the Z-type phases were found to be the main phases. The real part of permittivity and permeability of the $Ba_3Co_{2-2x}Mn_{2x}Fe_{24}O_{41}$ceramics decreased with frequency. On the other hand, loss tangents of permittivity and permeability tended to behave opposite to real part of permittivity and permeability. The real part of permeability was affected by Mn additions. The real part of permittivity, the loss tangent of permittivity and the real part of permeability, the loss tangent of permeability of $Ba_3Co_{0.2}Mn_{0.8}Fe_{24}O_{41}$ ceramics were 19.774, 0.176 and 15.183, 0.073, respectively, at 510 MHz. In order to investigate the effect of magneto-dielectric ceramics on antenna, PIFA (Planar Inverted F Antenna) was simulated with CST (Computer Simulation Technology). The operating frequency of antenna was decreased without considerable change of bandwidth by using the $Ba_3Co_{0.2}Mn_{0.8}Fe_{24}O_{41}$ ceramics as the carrier.

A Study on the Development of High Permeability and Low Coercivity Ni-Zn Ferrite (고투자율, 저보자력을 갖는 Ni-Zn Ferrite의 개발에 관한 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 1997
  • The effects of the various raw material composition and sintered temperature on the physical properties of Ni-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from microscope was from 6 ${\mu}{\textrm}{m}$ to 16 ${\mu}{\textrm}{m}$. As the sintering temperature was increased from 1030 $^{\circ}C$ to 1070 $^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen. Their values were about 0.20 Oe and 220 $^{\circ}C$. The frequency of specimen will used in the range from 400 kHz to 20 MHz. The basic composition of $Ni_{0.14}Zn_{0.64}Cu_{0.22}Fe_2O_4$ (specimen B) sintered at 1050 $^{\circ}C$ shows the best results at magnetic induction($B_r & B_m$).

  • PDF

Microwave Absorbing Properties of Grid-type Magnetic Composites (격자형 자성 복합재의 전파흡수 특성)

  • Park, Myung-Joon;Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.389-393
    • /
    • 2012
  • Improvement in microwave absorbance has been investigated by insertion of a periodic air cavity in rubber composites filled with magnetic powders. A mixture of $Co_2Z$ hexagonal ferrite and Fe powders were used as the absorbent fillers in silicone rubber matrix. The complex permeability and complex permittivity of the magnetic composites were measured by reflection/transmission technique. In the grid-type magnetic absorbers, the equivalent permeability (${\mu}_{eq}$) and permittivity (${\varepsilon}_{eq}$) are calculated as a function of air volume rate (K) on the basis of effective medium theory. Reduction in the material parameters (especially, dielectric permittivity and magnetic loss) has been estimated with the increase of K. Plotting the ${\mu}_{eq}$ and ${\varepsilon}_{eq}$ on the solution map of wave-impedance matching, wide bandwidth microwave absorbance has been predicted in the magnetic composites with an optimum value of K.