• Title/Summary/Keyword: $Co/TiO_{2}$

Search Result 973, Processing Time 0.024 seconds

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF

Cellular activities of osteoblast-like cells on alkali-treated titanium surface (알칼리 처리된 타이타늄 표면에 대한 골아 유사세포의 세포 활성도)

  • Park, Jin-Woo;Lee, Deog-Hye;Yeo, Shin-Il;Park, Kwang-Bum;Choi, Seok-Kyu;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.427-445
    • /
    • 2007
  • To improve osseointegration at the boneto-implant interface, several studies have been carried out to modify titanium surface. Variations in surface texture or microtopography may affect the cellular response to an implant. Osteoblast-like cells attach more readily to a rougher titanium surface, and synthesis of extracellular matrix and subsequent mineralization were found to be enhanced on rough or porous coated titanium. However, regarding the effect of roughened surface by physical and mechanical methods, most studies carried out on the reactions of cells to micrometric topography, little work has been performed on the reaction of cells to nanotopography. The purpose of this study was to examme the response of osteoblast-like cell cultured on blasted surfaces and alkali treated surfaces, and to evaluate the influence of surface texture or submicro-scaled surface topography on the cell attachment, cell proliferation and the gene expression of osteoblastic phenotype using ROS 17/2.8 cell lines. In scanning electron micrographs, the blasted, alkali treated and machined surfaces demonstrated microscopic differences in the surface topography. The specimens of alkali treatment had a submicro-scaled porous sur-face with pore size about 200 nm. The blasted surfaces showed irregularities in morphology with small(<10 ${\mu}m$) depression and indentation among flatter-appearing areas of various sizes. Based on profilometry, the blasted surfaces was significantly rougher than the machined and the alkali treated surfaces (p$TiO_2$) were observed on alkali treated surfaces, whereas not observed on machined and blasted surfaces. The attachment morphology of cells according to time was observed by the scanning electron microscope. After 1 hour incubation, the cells were in the process of adhesion and spreading on the prepared surfaces. After 3 hours, the cells on all prepared surfaces were further spreaded and flattened, however on the blasted and alkali treated surfaces, the cells exhibited slightly irregular shapes and some gaps or spaces were seen. After 24 hours incubation, most cells of the all groups had a flattened and polygonal shape, but the cells were more spreaded on the machined surfaces than the blasted and alkali treated surfaces. The MTT assay indicated the increase on machined, alkali treated and blasted surfaces according to time, and the alkali treated and blasted surfaces showed significantly increased in optical density comparing with machined surfaces at 1 day (p<0.01). Gene expression study showed that mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin of the osteoblast-like cells showed a tendency to be higher on blasted and alkali treated surfaces than on the machined surfaces, although no siginificant difference in the mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin was observed among all groups. In conclusion, we suggest that submicroscaled surfaces on osteoblast-like cell response do not over-ride the one of the surface with micro-scaled topography produced by blasting method, although the microscaled and submicro-scaled surfaces can accelerate osteogenic cell attachment and function compared with the machined surfaces.

APICAL FITNESS OF NON-STANDARDIZED GUTTA-PERCHA CONES IN SIMULATED ROOT CANALS PREPARED WITH ROTARY ROOT CANAL INSTRUMENTS (전동화일로 형성된 근관에서 비표준화 Gutta-percha Cone의 적합성)

  • Kwon, O-Sang;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.390-398
    • /
    • 2000
  • The purpose of this study was to evaluate the apical fitness of non-standardized gutta-percha cones in root canals prepared with rotary Ni-Ti root canal instruments of various tapers and apical tip sizes. Simulated sixty curved root canals of plastic blocks were prepared with crown-down technique using rotary root canal instruments of Maillefer ProFile$^{(R)}$ .04 and .06 taper (Maillefer Instrument SA, Switzerland). Specimens were divided into six groups and prepared as follows: Group 1, prepared up to size 25 of .04 taper ; Group 2, prepared up to size 30 of .04 taper ; Group 3, prepared up to size 35 of .04 taper ; Group 4, prepared up to size 25 of .06 taper ; Group 5, prepared up to size 30 of .06 taper ; Group 6 ; prepared up to size 35 of .06 taper. After cutting off the coronal portion of plastic, blocks perpendicular to the long axis of the canal with the use of a diamond saw, apical 5mm of canal space was analyzed. Prepared apical canal spaces were duplicated using rubber base impression material to evaluate two dimensional total area of apical canal space. Various sized gutta-percha cones were applied in the 5mm-apical canal space, which were size 25, size 30 and size 35 standardized gutta-percha cone, Diadent Dia-Pro ISO-.04$^{TM}$ and .06$^{TM}$(Diadent, Korea), and medium-fine (MF), fine (F), fine-medium (FM) and medium (M) sized non-standardized gutta-percha cones (Diadent, Korea). Coronal excess gutta-percha were cut off with a sharp blade. Photographs of impressed apical canal spaces and gutta-percha cones were taken with a CCD camera under a stereomicroscope and stored in a computer. Areas of the total canal space and gutta-percha cones were calculated using a digitalized image analysing program, CompuScope (Sungjin Multimedia Co., Korea). Ratio of apical fitness was obtained by calculating the area of gutta-percha cone to the total area of the canal space. The data were analysed statistically using One-way Analysis of Variance and Duncan's Multiple Range Test. The results were as follows: 1. In canals prepared up to size 25 ProFile$^{(R)}$ of .04 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 25 standardized ones (p<0.05). 2. In canals prepared up to size 30 ProFile$^{(R)}$ of .04 taper, non-standardized F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized MF cones occupied more canal space than size 30 standardized ones (p<0.05). 3. In canals prepared up to size 35 ProFile$^{(R)}$ of .04 taper, there was no significant difference in canal space occupation among non-standardized MF and F, size 35 standardized, and Dia-Pro ISO-.04$^{TM}$ cones (p>0.05). 4. In canals prepared up to size 25 ProFile$^{(R)}$ of .06 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$, or size 25 standardized ones (p<0.05), and Dia-Pro ISO-.06$^{TM}$, cones occupied significantly more space than size 25 standardized ones (p<0.05). 5. In canals prepared up to size 30 ProFile$^{(R)}$ of .06 taper, non-standardized FM cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized F cones occupied significantly more canal space than size 30 standardized ones (p<0.05). 6. In canals prepared up to size 35 ProFile$^{(R)}$ of .06 taper, non-standardized M and FM, Dia-Pro ISO-.06$^{TM}$ occupied significantly more canal space than size 35 standardized ones (p<0.05). In summary, in both canals prepared with .04 or .06 taper ProFile$^{(R)}$, non-standardized cones showed better fitness than Dia-Pro ISO$^{TM}$ or standardized ones, which was more characteristic in smaller canals.

  • PDF