• Title/Summary/Keyword: $Ce-ZrO_2$

Search Result 199, Processing Time 0.024 seconds

Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ

  • An, Hyegsoon;Shin, Dongwook;Ji, Ho-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • The effect of different Ni-containing additives on the sintering behavior and electric conductivity of the proton conducting electrolyte $BaCe_{0.35}Zr_{0.5}Y_{0.15}O_{3-{\delta}}$ (BCZY5) was investigated. Ni-doped, NiO-added, and $BaY_2NiO_5$(BYN)-added (all 4 mol%) BCZY5 samples were prepared by the solid state synthesis method and sintered at $1400^{\circ}C$ for 6 h. Among the three samples, the onset of densification was observed at the lowest temperature for NiO-added BCZY5, which is attributed to the formation of an intermediate phase at a low melting temperature. The BYN-added sample, where no consumption of the constitutional elements of the electrolyte was expected during sintering, exhibited the highest electrical conductivity whereas the doped sample had the lowest conductivity. The electrical conductivities at $500^{\circ}C$ under humid argon atmosphere were measured to be 2.0, 4.8, and $6.2mS{\cdot}cm^{-1}$ for Ni-doped and NiO- and BYN-added samples, respectively.

Oxygen Permeability, Electronic and ionic Conductivities and Defect Chemistry of Ceria-Zirconia-Calcia

  • Kawamura, Ken-ichi;Watanabe, Kensuke;Nigara, Yutaka;Kaimai, Atsushi;Kawada, Tatsuya;Mizusaki, Junichiro
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.146-150
    • /
    • 1998
  • The total conductivity and oxygen permeation in (Ce1-xZrxO2)0.9(CaO)0.1 solid solutions were measure das a function of temperature and oxygen partial pressure. Empirically, σ at given x and T was expressed essentially by σ=σo2+σeo Po2-1/4, where σo2 and σeo are constant. Applying a standard defect model in which major defects are Cace", Cece' and Vo in ideal solution, we can assign σo2 as the oxide ion conductivity decreases while the electronic conductivity increases with the increase in Zr content. Using the oxide ion and electronic conductivities thus determined, the oxygen permeation flux was calculated for respective Po2 and T conditions at which the measurements were made. The calculated values were found to agree with the observed ones.

  • PDF

Gas-phase Dehydration of Glycerol over Supported Silicotungstic Acids Catalysts

  • Kim, Yong-Tae;Jung, Kwang-Deog;Park, Eun-Duck
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3283-3290
    • /
    • 2010
  • The gas-phase dehydration of glycerol to acrolein was carried out over 10 wt % HSiW catalysts supported on different supports, viz. $\gamma-Al_2O_3$, $SiO_2-Al_2O_3$, $TiO_2$, $ZrO_2$, $SiO_2$, AC, $CeO_2$ and MgO. The same reaction was also conducted over each support without HSiW for comparison. Several characterization techniques, $N_2$-physisorption, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), the temperature-programmed desorption of ammonia ($NH_3$-TPD), temperature-programmed oxidation (TPO) with mass spectroscopy and CHNS analysis were employed to characterize the catalysts. The glycerol conversion generally increased with increasing amount of acid sites. Ceria showed the highest 1-hydroxyacetone selectivity at $315^{\circ}C$ among the various metal oxides. The supported HSiW catalyst showed superior catalytic activity to that of the corresponding support. Among the supported HSiW catalysts, HSiW/$ZrO_2$ and HSiW/$SiO_2-Al_2O_3$ showed the highest acrolein selectivity. In the case of HSiW/$ZrO_2$, the initial catalytic activity was recovered after the removal of the accumulated carbon species at $550^{\circ}C$ in the presence of oxygen.

A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas (폐기물 가스화 합성가스로부터 수소 생산을 위한 수성가스전이 반응용 Cu 기반 촉매 연구)

  • Na, Hyun-Suk;Jeong, Dae-Woon;Jang, Won-Jun;Lee, Yeol-Lim;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • Simulated waste-derived synthesis gas has been tested for hydrogen production through water-gas shift (WGS) reaction over supported Cu catalysts prepared by co-precipitation method. $CeO_2$, $ZrO_2$, MgO, and $Al_2O_3$ were employed as supports for WGS reaction in this study. $Cu-CeO_2$ catalyst exhibited excellent catalytic activity as well as 100% $CO_2$ selectivity for WGS in severe conditions ($GHSV=40,206h^{-1}$ and CO concentration = 38.0%). In addition, $Cu-CeO_2$ catalyst showed stable CO conversion for 20h without detectable catalyst deactivation. The high activity and stability of $Cu-CeO_2$ catalyst are correlated to its easier reducibility, high oxygen mobility/storage capacity of $CeO_2$.

BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs) (BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발)

  • An, Hyegsoon;Shin, Dongwook;Choi, Sung Min;Lee, Jong-Ho;Son, Ji-Won;Kim, Byung-Kook;Je, Hae June;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.271-277
    • /
    • 2014
  • To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.

Crystal Growth and Color Centers of Yttria Stabilized Cubic Zirconia(YSCZ) Single Crystals (Yttria Stabilized Cubic Zirconia(YSCZ) 단결정의 결정성장과 Color Centers)

  • 정대식;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.851-854
    • /
    • 1992
  • It was grown ZrO2:10 mol% Y2O3 single crystals doped with 1 wt% of rare earth metal ion (Ce, Pr, Nd, Er, Eu) by Skull Method. Grown crystals showed Ce:orange-red, Pr:golden-yellow, Nd:lilac, Er:pink, Eu:light pink due to dopant effect. It was examined color centers in light absorption pattern of visible region (λ= 300~700 nm); in as grown samples, absorption by Ce4+, (Pr4+, Pr3+), Nd3+, Er3+, Eu3+ ions were important, and in samples after vacuum annealing, decrease of absorption by Pr4+ ion and increase of absorption by Pr3+ ion was important, and absorption by Ce3+, Eu2+ was important due to reduction of activator.

  • PDF

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device (Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

Effect of CeO2 on piezoelectric properties of PSN-PZT ceramics for a hypersonic sound speaker application (지향성 스피커용 PSN-PZT 세라믹스의 압전 특성에 미치는 CeO2 첨가 효과)

  • Choi, J.B.;Song, K.H.;Kim, H.J.;Hwang, S.I.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2008
  • The effect of $CeO_2$ as a sintering additive on the microstructure and the piezoelectric property of yPb$(Sb_{0.5}Nb_{0.5})O_3$-(1-y)Pb$(Zr_{0.52}Ti_{0.48})O_3$ ($0{\leq}y{\leq}0.1$, PSN-PZT) for a hypersonic sound speaker (HSS) application was investigated. The samples were sintered at $1250^{\circ}C$ for 2 h. The crystal structure and surface morphology of the samples were examined using XRD and FE-SEM, respectively. Study on the influence of $CeO_2$ additives on the dielectric and piezoelectric properties indicated that the $CeO_2$-added PSN-PZT system had a high piezoelectric properties. The optimized results of ${\varepsilon}_r=1209$, $K_p$=52% $d_{33}$=351(pC/N) and $Q_m$=1230.16 were obtained at 0.4 wt.% $CeO_2$-added PSN-PZT.

The Oxidation of Functionally Gradient NiCrAlY/YSZ Coatings

  • Park, K.B.;Park, H.S.;Kim, H.J.;Lee, D.B.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.499-502
    • /
    • 2001
  • Functionally gradient NiCrAlY/$ZrO_2$-$Y_2$$O_3$ and NiCrAlY/$ZrO_2$- $CeO_2$-$Y_2$$O_3$ coatings were prepared by APS. The as-sprayed microstructure consisted of metal-rich and ceramic-rich regions, between which $Al_2$$O_3$-rich layers existed owing to the oxidation during APS. During oxidation between 900 and $1100^{\circ}C$ in air, the pre-existing $Al_2$$O_3$-rich scales grew, due mainly to the preferential reaction of Al with inwardly transporting oxygen along the heterogeneous phase boundaries. As the amount of ceramics in the coating increased, the oxidation resistance increased.

  • PDF

$Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method (에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조)

  • Park, Young-Soo;Byeon, Myeong-Seob;Choi, Jin-Sub;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.