• Title/Summary/Keyword: $CaCO_3$ powder

Search Result 125, Processing Time 0.025 seconds

Hardening and Hydroxyapatite Formation of Bioactive Cement Prepared from Calcium Phosphosilicate Glass

  • Kim, Cheol-Young;Park, Sang-Jong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.131-136
    • /
    • 1995
  • It has been reported that the biocement obtained by mixing $CaO-SiO_2-P_2O_5$ glass powders with ammonium phosphate solution has biocompatibility as will as high strength. The hardening mechanism and hydroxyapatite forming mechanism were discussed when $53.6%CaO_1,\; 38.1%SiO_2,\; 7.7P_2O_6,\; 0.6%CaF_2$(mole %) glass powder was reacted with ammonium phosphate solution and reacted in tris-buffer solution, respectively. High strength hardened biocement was obtained for the specimen with $CaNH_4PO_4\;H_2O$ crystal when the glass powder was mixed with ammonium phosphate solution, and hydroxyapatite crystal was rapidly formed only in the sample with $CaNH_4PO_4\;H_2O$ crystal when it was reacted in tris-buffer solution.

  • PDF

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

Investigation on the Self-Healing Performance of Cement Mortar Incorporating Inorganic Expansive Additives (무기질계 팽창재가 포함된 시멘트 모르타르의 자기치유성능에 관한 연구)

  • Shin, Jin-Wook;Her, Sung-Wun;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.404-412
    • /
    • 2020
  • Herein, the properties and self-healing performance of cement mortar incorporating calcium sulfoaluminate(CSA), crystalline admixture(CA), and magnesium oxide(MgO) were investigated. Mortar strength test and water permeability experiments were conducted to analyze self-healing performance of the mortar. Also, variation in crack width were measured via digital optical microscope observation. The hydration products formed in the crack via self-healing were analyzed using x-ray diffraction(XRD), thermogravimetry(TG), and digital optical microscope. The analysis revealed that compressive strength and tensile strength increased as CA substitutional ratio increased. However, in the case of MgO replacement, the compressive strength and tensile strength decreased as the CA substitution ratio increased. The products in the recovered cracks are found to be mostly Ca(OH)2, MgCO3, and CaCO3. CaCO3 was shown to be the main healing product and had a higher portion than Ca(OH)2 and MgCO3 in the recovery products. Moreover, the optimal mix derived via water permeability and crack width results was 8% CSA + 1% CA + 2.5% MgO.

Hardening Properties of Activated Calcium Dialuminate Clinker with Phosphoric Acid Solution

  • Song, Tae-Woong;Kim, Sei-Gi
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.235-238
    • /
    • 1997
  • Basic properties of new cement pastes based on the system $CaO-Al_2O_3-P_O_5-H_2O$were studied Phosphoric acid solutions and calcium dialuminate clinkers synthesized by the hydration-burning method were used for liquid and powder components of the paste, respectively Variation in the compositions of the paste was achieved by changing the liquid/powder ratio and the concentration of phosphoric acid solution. The hardening rate of the paste was so largely affected by the amount of phosphoric acid that hardening was inhibited with the low-concentrated solution but was explosively accelerated with the high-concentrated solution. The phosphoric acid solutions of concentration of 45~50% and the liquid/powder ratio of 0.5~1.5 were favoured for the high early-strength cement paste with the reasonable hardening rate and high strength. The binding phase of hardened paste was the dense amorphous gel of the system $CaO-Al_2O_3-P_O_5-H_2O$. in which the unreacted calcium dialuminate grains were embeded.

  • PDF

Development of Non-Sintered Ceramic Containing Basalt Powder (현무암 석분을 혼입한 비소성 세라믹의 개발)

  • Kim, Gui-Shik;Kim, Jung-Yun;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.93-99
    • /
    • 2014
  • The purpose of this paper is to manufacture the non-sintered ceramic used lime and industrial waste. The used materials were basalt powder sludge, calcium hydroxide(Ca(OH)2) and additives such as calcium stearate and $TiO_2$. The mixing ratios between Ca(OH)2 and sludge were 5:5, 6:4 and 8:2, respectively. The ceramic forms were pressured by 100, 200 and 300 bar and cured in 14% CO2 for 12 days. The behaviors of compressive strength, specific gravity, water absorption and pH of ceramic form were investigated. The results were compressive strength of over 36 MPa, water absorption of over 8.8%, pH value of over 12.3. And these results satisfied GR F 4006 and 4031 standard.

Formation of Sn-dispersed Si Nanoparticles by Co-grinding

  • Kim, Bong-Chull;Uono, Hiroyuki;Ue, Makoto;Senna, Mamoru
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.545-547
    • /
    • 2009
  • An immiscible Si/Sn (=7/3 by volume) powder mixture was subjected to simple grinding and subsequent leaching process to give Sn nanopowder reinforced or dispersed in Si powder. Crystallite and their agglomerates of Si were ca. 15 nm and 100 nm, respectively. Sn remained at 4.5 vol% in Si powder after aqueous HCl leaching, dispersively occluded in Si matrix as confirmed by ICP analysis and cross sectional TEM observation.

Powder Synthesis and Sintering Behavior of Hydroxyapatite by Citrate Method (Citrate법을 이용한 수산화아파타이트 분말합성 및 소결특성)

  • 임병일;최세영;정형진;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1003-1011
    • /
    • 1996
  • Hydroxyapatite powder was synthesized by a citrate method, . Char-like precursor composed of Ca8(HPO4)2(PO4)4.5H2O (OCP) and CaCo3 was found via viscous resin-like intermediate by heating the mixed aqueous solution of Ca(NO3)2.4H2O(NH4)2HPO4 and citric acid. Resulted powder was transformed into hydroxyapatite phase by firing over 120$0^{\circ}C$-135$0^{\circ}C$ for 4 hr using the powder calcined at 90$0^{\circ}C$ for 10 hr composed of mostly single hydroxyapatite phase. The sintered densities increased with firing temperature up to 130$0^{\circ}C$ but the highest relative density was about 94% of theoritical value. indicating the presence of closed pores. The maximum 96 MPa of flexural strength was obtained at 120$0^{\circ}C$ firing but the flexural strength showed lower values over the above sintering condition. Vitro test was performed by immersing of two jointed specimens in SBF for seven days and adhesion was observed between two specimens.

  • PDF

Optimization of $Nd^{3+}$ ion co-doping in $CaAl_2O_4:\;Eu^{2+}$ blue phosphor ($CaAl_2O_4:Eu^{2+}$ 청색(靑色) 형광체(螢光體)의 $Nd^{3+}$ 도핑 최적화(最適化)에 관한 연구(硏究))

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.46-50
    • /
    • 2007
  • Blue phosphor calcium aluminate, $CaAl_2O_4:Eu^{2+}$ co-doped with $Nd^{3+}$ was prepared by solid state synthesis method. Phosphor materials with 1 mol% $Eu^{2+}$ and varying compositions of $Nd^{3+}$ show high brightness and long persistent luminescence. The synthesized phosphor materials were investigated by powder x-ray diffraction (XRD), SEM, TEM, photoluminescence excitation and emission studies. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}:Nd^{3+}$ was observed in the blue region (${\lambda}_{max}=440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. $Nd^{3+}$ ion doping in the phosphor results in long afterglow phosphorescence when the excitation light is cut off.

Evaluation of Organic-Inorganic Hybrid Insulation Material Using Inorganic Filler and Polyurethane (무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 특성 평가)

  • Lee, Jong-Kyu;Soh, Jung-Sub;Noh, Hyun-Kyung
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.604-608
    • /
    • 2012
  • Recently, inorganic-organic hybrid materials have attracted much attention not only for their excellent thermal conductivity but also for their flame retardant properties. In this study, the properties of organic-inorganic hybrid insulating materials using inorganic fillers and polyurethane foam with different foaming conditions have been investigated. The addition of 1.5 wt% water to polyurethane as foaming agent shows the best foaming properties. The pore size was decreased in the foaming body with increasing of the $CaCO_3$ addition. The apparent density and thermal conductivity were increased by increasing the $CaCO_3$ addition. With an increasing amount of $CaCO_3$ powder, the flame retardant property is improved, but the properties of thermal conductivity and apparent density tend to decrease. When the addition of fine particles of $CaCO_3$, the apparent density and thermal conductivity were increased and, also, with the addition of coarse particles over $45{\mu}m$ in size, the apparent density and thermal conductivity were increased as well. In this study, the adding of $CaCO_3$ with average particle size of $27{\mu}m$ led to the lowest thermal conductivity and apparent density. After evaluation with different inorganic fillers, $Mg(OH)_2$ showed the highest thermal conductivity; on the other hand, $CaCO_3$ showed the lowest thermal conductivity.

Optimal Abrasion Conditions for Separating Aggregate and Cement paste for Using Waste Concrete Fine Powder as Decarbonization Raw Material (폐콘크리트 미분말을 탈탄산 원료로 사용하기 위한 골재와 시멘트페이스트 분리의 최적 마쇄 조건 분석)

  • Ha-Seog Kim;Min-Chul Lee
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.121-129
    • /
    • 2023
  • In this study, we attempted to reduce CO2 generated during manufacturing by replacing limestone (CaCO3), a carbonate mineral used to produce cement clinker, with a decarbonated raw material to which CO2 is not bound. The raw material for decarbonization was cement paste attached to waste concrete, among various industrial by-products. Waste concrete has cement paste adhered to the aggregate, which cannot be separated efficiently by general crushing and grinding methods. Peeling and grinding methods effectively remove only the cement paste without damaging the original aggregate. The abrasion time, steel ball type, and steel ball ratio were selected as effective factors for Abrasion. An optimal abrasion experiment was conducted to produce waste concrete fine powder containing decarbonated CaO as a cement clinker raw material through an experimental design method. The experiment revealed that the optimal conditions for producing waste concrete fine powder were an abrasion time of 7 minutes, a steel ball size for pulverization of 8 mm, and a steel ball ratio for pulverization of 0.6.