• 제목/요약/키워드: $Ca^{2+}$-activated $K^{+}$channel

검색결과 165건 처리시간 0.03초

Functional Characteristics of TRPC4 Channels Expressed in HEK 293 Cells

  • Sung, Tae Sik;Kim, Min Ji;Hong, Soojin;Jeon, Jae-Pyo;Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.167-173
    • /
    • 2009
  • The classical type of transient receptor potential (TRPC) channel is a molecular candidate for $Ca^{2+}$-permeable cation channels in mammalian cells. Because TRPC4 and TRPC5 belong to the same subfamily of TRPC, they have been assumed to have the same physiological properties. However, we found that TRPC4 had its own functional characteristics different from those of TRPC5. TRPC4 channels had no constitutive activity and were activated by muscarinic stimulation only when a muscarinic receptor was co-expressed with TRPC4 in human embryonic kidney (HEK) cells. Endogenous muscarinic receptor appeared not to interact with TRPC4. TPRC4 activation by $GTP{\gamma}S$ was not desensitized. TPRC4 activation by $GTP{\gamma}S$ was not inhibited by either Rho kinase inhibitor or MLCK inhibitor. TRPC4 was sensitive to external pH with $pK_a$ of 7.3. Finally, TPRC4 activation by $GTP{\gamma}S$ was inhibited by the calmodulin inhibitor W-7. We conclude that TRPC4 and TRPC5 have different properties and their own physiological roles.

Taurine relaxes human radial artery through potassium channel opening action

  • Ulusoy, Kemal Gokhan;Kaya, Erkan;Karabacak, Kubilay;Seyrek, Melik;Duvan, ibrahim;Yildirim, Vedat;Yildiz, Oguzhan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.617-623
    • /
    • 2017
  • The vascular actions and mechanisms of taurine were investigated in the isolated human radial artery (RA). RA rings were suspended in isolated organ baths and tension was recorded isometrically. First, a precontraction was achieved by adding potassium chloride (KCl, 45 mM) or serotonin (5-hydroxytryptamine, 5-HT, $30{\mu}M$) to organ baths. When the precontractions were stable, taurine (20, 40, 80 mM) was added cumulatively. Antagonistic effect of taurine on calcium chloride ($10{\mu}M$ to 10 mM) -induced contractions was investigated. Taurine-induced relaxations were also tested in the presence of the $K^+$ channel inhibitors tetraethylammonium (1 mM), glibenclamide ($10{\mu}M$) and 4-aminopyridine (1 mM). Taurine did not affect the basal tone but inhibited the contraction induced by 5-HT and KCl. Calcium chloride-induced contractions were significantly inhibited in the presence of taurine (20, 40, 80 mM) (p<0.05). The relaxation to taurine was inhibited by tetraethylammonium (p<0.05). However, glibenclamide and 4-aminopyridine did not affect taurine -induced relaxations. Present experiments show that taurine inhibits 5-HT and KCl -induced contractions in RA, and suggest that large conductance $Ca^{2+}$-activated $K^+$ channels may be involved in taurine -induced relaxation of RA.

Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons

  • Han, Jin-Eon;Cho, Jin-Hwa;Choi, In-Sun;Kim, Do-Yeon;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.215-223
    • /
    • 2017
  • The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent $K^+$ and $Ca^{2+}$ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent $K^+$currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent $K^+$ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker $Cs^+$ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent $Ca^{2+}$ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

Diversity of Ion Channels in Human Bone Marrow Mesenchymal Stem Cells from Amyotrophic Lateral Sclerosis Patients

  • Park, Kyoung-Sun;Choi, Mi-Ran;Jung, Kyoung-Hwa;Kim, Seung-Hyun;Kim, Hyun-Young;Kim, Kyung-Suk;Cha, Eun-Jong;Kim, Yang-Mi;Chai, Young-Gyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.337-342
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to $10^{th}$ passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of $K^+$ currents, including noise-like $Ca^{+2}$-activated $K^+$ current ($IK_{Ca}$), a transient outward $K^+$ current ($I_{to}$), a delayed rectifier $K^+$ current ($IK_{DR}$), and an inward-rectifier $K^+$ current ($K_{ir}$) were heterogeneously present in these cells, and a TTX-sensitive $Na^+$ current ($I_{Na,TTX}$) was also recorded. In the RT-PCR analysis, Kv1.1,, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, ($I_{Na,TTX}$) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.

흰쥐 적출 자궁의 수축 작용과 흰쥐 장관에 있어 칼륨에 의해 활성화되는 칼슘 채널에 대한 Cyclobuxine D의 영향 (Effects of Cyclobuxine D on Drug-Induced Contractions of the Isolated Rat Uterine Muscle and Potassium-Activated Calcium Channels in an Intestinal Smooth Muscle)

  • 권준택;이종화;박영현;조병현;최규홍;김유재;김종배;김정목;김천숙;차영덕;김영석
    • 대한약리학회지
    • /
    • 제24권1호
    • /
    • pp.103-109
    • /
    • 1988
  • Buxus microphylla var. koreana Nakai에 존재 하는 steroidal alkaloid인 cyclobuxine D는 흰쥐에 있어 심박동수 감소 작용, 적출 개구리 심장에서 수축력 감소작용, 토끼 적출 장관에서 acetylcholine과 $Ba^{++}$.에 유발되는 수축에 대한 억제작용 등을 나타낸다고 보고되었다. 본 연구에서는 흰쥐 적출 자궁에서 acetylcholine, oxytocin과 $Ba^{++}$에서 의해 나타나는 수축 작용에 대한 cyclobuxine D의 영향을 관찰하였으며, 또 흰쥐 적출장관에서 칼륨에 의해 활성화되는 칼슘채널에 대한 cyclobuxine D의 작용을 관찰하였다. Cyclobuxine D는 흰쥐 적출 자궁에서 acetylcholine, oxytocin과 $Ba^{++}$에 의해 증가되는 peak tension과 duration을 용량적으로 현저히 억제하였다. Cyclobuxine D는 oxytocin보다 acetylcholine에 의해 나타나는 수축작용에 대해 강하게 작용했다. 흰쥐 적출 장관(ileum)을 Ca을 고갈시킨 Tyrode's 용액에 $40{\sim}50$분 담그고 $Na^+$ 대신 $K^+$로 대체시킨 용액에 10분간 담근 후 1.8 mM $CaCl_2$를 가했을 때 이중적인 근육수축작용이 나타난다(Phasic and tonic increase in tension). Cyclobuxine D $(6.2{\times}10^{-5}\;M)$은 이 두 components를 유의하게 억제하였으며 tonic component가 최대치에 도달했을 때 cyclobuxine D $(3.1{\times}10^{-4}\;M)$을 가하면 근육은 긴장도를 빨리 상실했다. 이 결과는 적출 장관에 있어 칼륨에 의해 활성화되는 칼슘 채널이 cyclobuxine D에 의해 차단되고 있음을 나타낸다. 이상의 결과에서 cyclobuxine D의 흰쥐 적출 자궁에 대한 수축 억제 작용은 voltage-dependent calcium channel 차단에 밀접한 관련이 있는 것으로 사려된다.

  • PDF

Regulatory Action of $\beta-adrenergic$ Agonist and 8-bromocyclic AMP on Calcium Currents in the Unfertilized Mouse Eggs

  • Haan, Jae-Hee;Cheong, Seung-Jin;Kim, Yang-Mi;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • 제27권2호
    • /
    • pp.175-183
    • /
    • 1993
  • There are many report suggesting that influx and intracellular calcium concentration $([Ca^{2+}]_i)$ are related to cell signalling in various cells. However, it has not been reported that calcium channel activation is affected by the substances involved in signal transduction pathways in the mouse eggs. In this study, the effects of isoprenaline (ISP) and cyclic AMP on calcium influx through calcium channels were investigated to show their relationship with the signal transduction process in unfertilized mouse eggs. Using whole cell voltage clamp techniques, calcium currents, elicited by the depolarizing pulses of 300 ms duration (from -50 mV to 50 mV in 10 mV increments) from a holding potential of -80 mV, were recorded. The current-voltage (I-V) relation of calcium currents was shown to be bell-shaped; the current began to activate at -50 mV and reached its maximum $(-1.33{\pm}0.16\;nA:\;mean{\pm}S.E.,\;n=7)$ at -10 mV, then decayed at around 50 mV. Calcium currents were fully activated within $7\;ms{\sim}20\;ms$ and completely inactivated 200 ms after onset of the step pulse. ISP within the concentration ranges of $10^{-8}\;M{\sim}10^{-4}\;M$ dose-dependently increased the amplitude calcium current. The permeable cyclic AMP analogue,8-bromocyclic AMP, also increased its maximal amplitude by 46ft at $10^{-5}\;M$, while protein kinase inhibitor (PKI), which is known to inhibit 0.02 phosphorylating units of cyclic AMP-dependent protein kinase (PKA) per microgram decreased calcium currents. Currents recorded in the presence of PKI were resistant to increase by the application of $10^{-5}\;M$. Also, PKI inhibited the calcium current increase elicited by ISP treatment. These results suggest that $\beta-adrenergic$ regulation of the calcium channel is mediated by the cAMP-dependent protein kinase. This signal transduction pathway might play a role in regulating $[Ca^{2+}]_i$, level due to the increase of calcium influx in mouse eggs.

  • PDF

Ionomycin Recovers Taurine Transporter Activity in Cyclosporin A Treated macrophages

  • Kim, Ha-Won;Lee, Eun-Jin;Kim, Won-Bae;Hyun, Jin -Won;Kim, Byung-Kak
    • Preventive Nutrition and Food Science
    • /
    • 제4권4호
    • /
    • pp.265-269
    • /
    • 1999
  • Taurine is a major $\beta$-amino acid in various tissues. Taurine transporter (TAUT) is responsible for the transportation of taurine in the cell. The transporter is affected by various stimuli to maintain its cell volume. Macrophage cell volume varies in its activated states. In our experiment, it was found that the murine macrophage cell line, RAW264.7, expressed TAUT protein in its membrane. Its transportation activities could be blocked by a $\beta$-amino acid such as $\beta$-alanine, but not by $\alpha$-amino acids in this cell line. When assessed in RAW264.7 under the influence of immunosuppressive reagents, the activity of the TAUT was decreased by the treatment of rapamycin (RM) or cyclosporin A (CsA). However when ionomycin (IM) was added to this system, TAUT activity was recovered only in CsA-treated cells in a concentration-dependent manner. In order to inhibit the voltage gated {TEX}$Ca^{+2}${/TEX} channel, calmidazolium was added to the RAW264.7 cell line. Treatment of the cell with calmidazolium completely blocked TAUT. Furthermore, addition of IM to this system recovered the activity of TAUT again. When we added phorbol myristate acetate (PMA) to the cell line, secretion of nitric oxide (NO) was increased 4-fold and the TAUT activity was decreased 5-fold. However, the addition of N-nitro L-arginine methyl ester (L-NAME), an inducible NO synthase (iNOS) inhibitor, to the PMA-treated cells, resulted in the recovery of TAUT activity. These results showed that the activity of TAUT was sensitive to the intracellular concentrations of both {TEX}$Ca^{+2}${/TEX} and NO.

  • PDF

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF

저산소증이 흰쥐 관류부신에서 DMPP, McN-A-343, Excess $K^+$ 및 Ach의 카테콜아민 분비작용에 미치는 영향 (Influence of Hypoxia on Catecholamine Secretion Evoked by DMPP, McN-A-343, Excess $K^+$ and ACh from The Perfused Rat Adrenal Gland)

  • 임동윤;허재봉;박유환
    • 대한약리학회지
    • /
    • 제31권1호
    • /
    • pp.63-74
    • /
    • 1995
  • 저산소 상태에서는 부신수질로부터 카테콜아민 (CA) 유리작용이 활성화되지만 반면에 소의 배양 chromaffin cell에서는 고통도의 $K^+$에 의한 CA 분비작용이 억제된다고 알려져 있다. 본 연구에서는 적출 흰쥐 관류부신에서 콜린성 자극과 막탈분극에 의한 CA 분비작용에 대한 저산소증의 영향을 검색하고 그 작용기전을 규명코자 하였다. 본 연구목적을 위하여, 적출 흰쥐 관류부신을 이용, 저산소증이 니코틴($N_1$), 무스카린($M_1$) 수용체 흥분약, 막탈분극 약물, 칼슘채널 활성화 약물, 세포내 칼슘유리 약물 및 ACh에 의한 CA 분비에 미치는 영향을 연구하였으며, 저산소증은 95% 질소 및 5% 이산화탄소 혼합가스를 Krebs액에 주입하여 유발시켰으며, $3{\sim}4$시간동안 유지하였다. 저산소증 유발시, DMPP ($100{\mu}M$), McN-A-343 ($100{\mu}M$), ACh (5.32 mM), Bay-K-8644 ($10{\mu}M$) 및 high $K^+$ (56 mM)에 의한 CA 분비작용을 시간의존적으로 점차 유의성인 감소를 나타내었다. 그러나, cyclopiazonic acid ($10{\mu}M$)에 의한 CA 분비반응에는 하등의 영향을 일으키지 못하였다. 또한 저산소증 자체가 CA의 기초분비 작용에는 영향을 미치지 않았다. 이와같은 실험결과로 보아, 저산소증시 콜린성 자극 및 막탈분극에 의한 CA 분비 작용이 억제되며, 이러한 억제작용은 chromaffin cell내로 $Ca^{++}$ 유입을 직접적으로 억제시키는 결과에 기인되며, 세포내 칼슘저장고로부터 칼슘유리작용과는 관계없는 것으로 사료된다.

  • PDF

cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria

  • Peng, Li-qun;Li, Ping;Zhang, Qiu-li;Hong, Lan;Liu, Li-ping;Cui, Xun;Cui, Bai-ri
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.9-14
    • /
    • 2016
  • Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the $Na^+-K^+$-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain ($3.0{\mu}mol/L$) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 ($3.0{\mu}mol/L$), an inhibitor for reverse mode of $Na^+-Ca^{2+}$ exchangers (NCX), but did not by L-type $Ca^{2+}$ channel blocker nifedipine ($1.0{\mu}mol/L$) or protein kinase A (PKA) selective inhibitor H-89 ($3.0{\mu}mol/L$). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline ($100.0{\mu}mol/L$), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP ($0.5{\mu}mol/L$) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 ($30{\mu}mol/L$), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.