• Title/Summary/Keyword: $Ca^{2+}$ concentration

Search Result 2,935, Processing Time 0.032 seconds

Cell Biological Studies on Growth and Development Effect of polyamine and $Ca^{2+}$ on D-glucose-6-phosphate cyclohydrolase activity in carrot root protoplast (생체생장에 관한 세포생물학적 연구 당근 뿌리의 원형질체에서 D-glucose-6-phosphate cyclohydrolase 활성도에 미치는 polyamine과 $Ca^{2+}$의 영향)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.30 no.4
    • /
    • pp.249-255
    • /
    • 1987
  • The effect of polyamine and Ca2+ on D-glucose-6-phosphate cyclohydrolase activity was studied in Daucus carota root. The enzyme activity was reduced in response to increase in concentration of Ca2+, not the Ca2+-calmodulin complex. The inhibition effect due to Ca2+ was reversed by polyamine, especially remarkable at low concentration of Ca2+. The effect of the Ca2+ on the enzyme seemed to compete with polyamine according to the Lineweaver-Burk plot. The enzyme activity from carrot root protoplast cultured in the prescence of verapamil was higher than that of the control. Such cumulative results suggest that the inhibition by the Ca2+ and enhancement or reversal by polyamine could regulate the biosynthesis of pectin and hemicellulose to some extent.

  • PDF

Ameliorating Effect of $\textrm{Ca}({NO_3})_2$ or $\textrm{CaCl}_2$ on the Growth and Yield of NaCl-Stressed Tomato Grown in Plastic Pots Filled with Soil (NaCl 스트레스를 받은 토마토의 생육 향상을 위한 $\textrm{Ca}({NO_3})_2$$\textrm{CaCl}_2$ 처리 효과)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Enhanced supply of $Ca^{2+}$ as well as NO$_3$$^{[-10]}$ is known to restrict the uptake of the Na$^{+}$ and Cl$^{[-10]}$ ion and ameliorate growth under saline conditions. This test was conducted to investigate the ameliorating effects of Ca(NO$_3$)$_2$ or CaCl$_2$ on the growth and yield of NaCl-stressed tomato plants grown in plastic pot filled with soil. All treatments except for the control were supplied with 80 mM NaCl fur two weeks after transporting. The saline solutions with nutrient were supplemented with either 0, 10 or 20 mM Ca(NO$_3$)$_2$ and either 0, 10 or 20 mM CaCl$_2$ during harvesting time from two weeks after transporting. Ca(NO$_3$)$_2$ or CaCl$_2$ application enhanced the growth such as plant height, fresh weight, dry weight, fruit number, and fruit weight, and yield of NaCl-stressed tomato, and also their effects increased greater as concentration of supplemented Ca(NO$_3$)$_2$ or CaCl$_2$increased. Yield increased in 20 mM Ca(NO$_3$)$_2$ compared with the others except fur the control. Photosynthetic rate in Ca treatments was lower than that of the control, but higher than that of NaCl treatment. Leaf chlorophyll content was higher in Ca treatments compared with the others, especially in younger leaf, while that was not affected by concentration of supplemented Ca. Ca(NO$_3$)$_2$ or CaCl$_2$ supply increased the $K^{+}$ and $C^{2+}$ concentration of tomato plants, whereas the Na$^{+}$ transport to the leaves was inhibited. There was a strong increase in the $K^{+}$/Na$^{+}$ ratio in plants treated Ca(NO$_3$)$_2$, or CaCl$_2$. Cl$^{[-10]}$ content of plants was decreased by supplemental Ca(NO$_3$)$_2$ but Cl$^{[-10]}$ was increased in plants with CaCl$_2$compared with Ca(NO$_3$)$_2$. N concentration in plants of tomato increased with enhanced Ca(NO$_3$)$_2$ or CaCl$_2$supply, In conclusion, our study confirms the potential of Ca(NO$_3$)$_2$ or CaCl$_2$to alleviate NaCl-induced growth reductions in tomato.

Antioxidant and Whitening Activities of Chlorogenic Acid, Quercetin, and Quercitrin from the Fruit of Vaccinum oldhami (정금나무 열매(Fruit of Vaccinum oldhami)의 분리 정제물(클로로겐산, 퀘르세틴 및 퀘르시트린)에 관한 항산화 및 미백활성 검증)

  • Jung-Woo Chae;Min-Jeong Oh;Hyeon-Ji Yeom;Jin-Young Lee
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.115-128
    • /
    • 2023
  • The fruit of Vaccinum oldhami was separated and purified to obtain the compounds chlorogenic acid (CA), quercetin (QT), and quercitrin (QR). The electron-donating abilities of CA, QT, and QR at 1,000 ㎍/ml were 91.9%, 89.9%, and 77.4%, respectively QT and QR showed 99.5% and 91.4% ABTS+ radical scavenging ability at a 1,000 ㎍/ml concentration, respectively, and CA showed a 95% ability or higher at 100 ㎍/ml. Regarding tyrosinase inhibitory activity, CA, QT, and QR exhibited 29.5%, 34.7%, and 23.7% efficacy, respectively, at 1,000 ㎍/ml. Regarding the cell viability for melanoma cells (B16F10) assessed through MTT assay, CA, QT, and QR showed cell a viability of 80% or more at 100 ㎍/ml. To measure the deterrent of protein expression, CA affected TRP-1 and TRP-2 in accordance with increases in concentration. The protein expression inhibition rate of QT was excellent for TRP-1, TRP-2, and tyrosinase. CA was confirmed to have an excellent mRNA expression inhibitory effect against MITF, and the amount of mRNA expression of TRP-1, TRP-2, and tyrosinase decreased with an increase in the CA concentration. As the concentration of QT increased, the mRNA expression of MITF, TRP-2, and tyrosinase decreased. QR decreased the amount of mRNA as the QR concentration increased. The excellent antioxidant and whitening effects of CA, QT, and QR were thus confirmed.

Ca2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain

  • Baik, Julia Young;Park, Eunice Yon June;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.277-286
    • /
    • 2020
  • Polycystic kidney disease 2-like-1 (PKD2L1), also known as polycystin-L or TRPP3, is a non-selective cation channel that regulates intracellular calcium concentration. Calmodulin (CaM) is a calcium binding protein, consisting of N-lobe and C-lobe with two calcium binding EF-hands in each lobe. In previous study, we confirmed that CaM is associated with desensitization of PKD2L1 and that CaM N-lobe and PKD2L1 EF-hand specifically are involved. However, the CaM-binding domain (CaMBD) and its inhibitory mechanism of PKD2L1 have not been identified. In order to identify CaM-binding anchor residue of PKD2L1, single mutants of putative CaMBD and EF-hand deletion mutants were generated. The current changes of the mutants were recorded with whole-cell patch clamp. The calmidazolium (CMZ), a calmodulin inhibitor, was used under different concentrations of intracellular. Among the mutants that showed similar or higher basal currents with that of the PKD2L1 wild type, L593A showed little change in current induced by CMZ. Co-expression of L593A with CaM attenuated the inhibitory effect of PKD2L1 by CaM. In the previous study it was inferred that CaM C-lobe inhibits channels by binding to PKD2L1 at 16 nM calcium concentration and CaM N-lobe at 100 nM. Based on the results at 16 nM calcium concentration condition, this study suggests that CaM C-lobe binds to Leu-593, which can be a CaM C-lobe anchor residue, to regulate channel activity. Taken together, our results provide a model for the regulation of PKD2L1 channel activity by CaM.

Mechanism of Glutamate-induced $[Ca^{2+}]i$ Increase in Substantia Gelatinosa Neurons of Juvenile Rats

  • Jung, Sung-Jun;Choi, Jeong-Sook;Kwak, Ji-Yeon;Kim, Jun;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.53-57
    • /
    • 2003
  • The glutamate receptors (GluRs) are key receptors for modulatory synaptic events in the central nervous system. It has been reported that glutamate increases the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) and induces cytotoxicity. In the present study, we investigated whether the glutamate-induced $[Ca^{2+}]_i$ increase was associated with the activation of ionotropic (iGluR) and metabotropic GluRs (mGluR) in substantia gelatinosa neurons, using spinal cord slice of juvenile rats (10${\sim}21 day). $[Ca^{2+}]_i$ was measured using conventional imaging techniques, which was combined with whole-cell patch clamp recording by incorporating fura-2 in the patch pipette. At physiological concentration of extracellular $Ca^{2+}$, the inward current and $[Ca^{2+}]_i$ increase were induced by membrane depolarization and application of glutamate. Dose-response relationship with glutamate was observed in both $Ca^{2+}$ signal and inward current. The glutamate-induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV was blocked by CNQX, an AMPA receptor blocker, but not by AP-5, a NMDA receptor blocker. The glutamate-induced $[Ca^{2+}]_i$ increase in $Ca^{2+}$ free condition was not affected by iGluR blockers. A selective mGluR (group I) agonist, RS-3,5-dihydroxyphenylglycine (DHPG), induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV in SG neurons. These findings suggest that the glutamate-induced $[Ca^{2+}]_i$ increase is associated with AMPA-sensitive iGluR and group I mGluR in SG neurons of rats.

Effect of Calcium Concentration in Fertigation Solution on Growth and Nutrient Uptake of Cut Chrysanthemum 'Biarritz' (Ca 시비농도가 절화국 'Biarritz'의 생육과 양분 흡수에 미치는 영향)

  • Kim Jeong Man;Choi Jong Myung;Chung Hae Joon;Choi Dong Chil
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.128-136
    • /
    • 2005
  • The objective of this study was to determine the effect of calcium concentrations in fertilizer solution on growth and cut flower quality of chrysanthemum 'Biarritz' To achieve this, deficiency symptom and growth characteristics as influenced by controlled Ca concentrations in fertilizer solution were investigated. The analysis of plant tissue and soil solution of root media were also conducted to secure optimum concentration for plant growth. Calcium deficiency developed on the very youngest leaves and the young leaves developed 'cupped' shape as they expand. The cut flower length of 0, 3.0 and 6.0 mM treatments were 105.8, 106.5, and 107.3cm, respectively. Elevated Ca concentration within the range from 0 to 6.0mM in fertilizer solution increased cut flower weight. The cut flower weight of control and 6.0mM treatment were 51.6 and 59.4 g, respectively. The tissue Ca content of 6.0mM treatment in which crops showed the highest growth among treatments was $3.09\%$ based on the dry weight of the youngest fully expanded leaves. From the results, it seems necessary to maintaining tissue Ca content higher than $2.8\%$. Soil Ca concentrations increased as K concentrations in fertilizer solution were elevated. Ca concentration in 0.0, 1.5, 3.0, 4.5 and 6.0mM treatments were 5.0, 7.4, 12.1, 16.5 and $28.2mg{\cdot}L^{-1}$, respectively, at harvesting stage. It is suggested that Ca concentration higher than $25.4mg{\cdot}L^{-1}$ in soil solution of root media is required to maintain normal growth.

Effects of Protein Kinases on Phospholipase C Activation and Intracellular $Ca^{2+}$ Mobilization Induced by Endothelin-1 (Endothelin-1에 의한 phospholipase C 활성화와 세포내 $Ca^{2+}$ 이동에 미치는 protein kinase들의 효과)

  • 조중형;김현준;이윤혜;박진형;장용운;이승준;이준한;윤정이;김창종
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.162-168
    • /
    • 2000
  • To investigate the effects of protein kinases on endothelin-1-induced phospholipase C activation and $Ca^{2+}$ mobilization in Rat-2 fibroblast, we measured the formation of inositol phosphates and intracellular $Ca^{2+}$ concentration with [$^3$H]inositol and Fura-2/AM, respectively. Endothelin-1 dose-dependently activated phospholipase C and increased intracellular $Ca^{2+}$ concentration. Protein kinase C activator PMA, significantly inhibited both phospholipase C activity and $Ca^{2+}$ mobilization induced by endothelin-1. Tyrosine kinase inhibitor, genistein, inhibited both. On the other hand, cyclic nucleotide (cAMP and cGMP) did not have any influence on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1. These results suggest that protein kinase C and tyrosine kinase counteract on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1 in Rat-2 fibroblast. fibroblast.

  • PDF

Effect of Extracellular $Ca^{2+}$ and $Ca^{2+}$-ATPase on the Acrosome Reaction of Spermatozoa (세포외 $Ca^{2+}$$Ca^{2+}$-ATPase가 정자의 첨체반응에 미치는 영향)

  • Yung-Keun Oh;Jae-Ho Chang;In-Ho Choi;Noh-Pal Jung;Hyung-Cheul Shin;Byoung-Ju Kwak
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1998
  • This study has been designed in order to examine a physiological role of $Ca^{2+}$ which has been known as an essential factor for capacitation, to confirm whether the enzyme activity of $Ca^{2+}$-ATPase on capacitation is important or not, and to clarify relationship between various levels of the $Ca^{2+}$ concentration and $Ca^{2+}$-ATPase which has been known to be an important factor of the plasma membranes. In the present study applying quercetin, a $Ca^{2+}$-ATPase inhibitor, the enzymatic effect of $Ca^{2+}$-ATPase on capacitation was found to be remarkable: a significant increase of the transition from the original type (type A) to the type B and the type AR of the spermatozoa. This finding suggests that $Ca^{2+}$-ATPase plays an important role in the efflux and the influx of the $Ca^{2+}$ which has been known to be an essential factor the capacitation and acrosome reaction, and that the inhibitory action of the $Ca^{2+}$-ATPase might be a prerequsite step toward the acrosome reaction. The conclusion reached can be deduced as follows: increment of the intracelluar $Ca^{2+}$ concentration occurred by controlling the slope of $Ca^{2+}$ concentration through $Ca^{2+}$-ATPase activities in both the intra- and extracelluar fluid may be an important procedure for capacitation and acrosome reaction, and ultimately for fertilization of the spermatozoa and the ova.

  • PDF

Acute Ethanol Reduces Calcium Signaling Elicited by K+ Depolarization in Cultured Cerebellar Granule Neurons

  • Kim, Jong-Nam
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.63-66
    • /
    • 2000
  • The effects of acute ethanol on the high K+ induced $Ca^{2+}}$ signals were examined from primary cultures of cerebellar granule neurons. $Ca^{2+}}$ signals were measured with Calcium Green-1 based microscopic video imaging. Because $Ca^{2+}}$ signal was low in most of granule neurons without stimuli, high KCI was used for depolarization. In most case, acute exposure to ethanol reduced the peak amplitude of the $Ca^{2+}}$ signals, induced by high K+, even though low concentration of ethanol(2~10mM) was used and the effects lasted more than 30min. In was also possible to see differences of ethanol inhibition, i.e. the temporal pattern of $Ca^{2+}}$ signal reductions and the strength of inhibition of $Ca^{2+}}$ signals in cerebellar granule neurons. These results indicate that low concentration of ethanol has diverse actions on the $Ca^{2+}}$ signals in cerebellar granule neurons.

  • PDF

Proposal of Application Method for Concentration Averaging of Radioactive Waste in Korea by Using CA BTP of US NRC

  • Jiyoung Yi;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.347-357
    • /
    • 2023
  • United States Nuclear Regulatory Commission (U.S. NRC) specifies regulations on obtaining licenses and describes the technical position on the average waste concentration, also known as Concentration Averaging and Encapsulation Branch Technical Position (CA BTP); CA BTP helps classify blendable waste and discrete items and address concentration averaging. The technical position details are reviewed and compared in a real environment in Korea. A few cases of concentration averaging based on the application of CA BTP to domestic radioactive waste are presented, and the feasibility of the application is assessed. The radioactive waste considered herein does not satisfy the Disposal Concentration Limit (DCL) of the second-phase disposal facility while applying the preliminary classification. However, if CA BTP is applied when the radioactive waste is mixed with other radioactive waste items in a large and heavy container, it can be disposed of at the second-phase disposal facility in Gyeongju Repository. To apply the CA BTP of the U.S. NRC, it is necessary to investigate the safety assessment conditions of the US and Korea.