• 제목/요약/키워드: $Ca^{2+}$/calmodulin-dependent protein kinase II

검색결과 24건 처리시간 0.02초

Role of Calmodulin in the Generation of Reactive Oxygen Species and Apoptosis Induced by Tamoxifen in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.187-191
    • /
    • 2002
  • Tamoxifen, an antiestrogen, has previously been shown to induce apoptosis in HepG2 human hepatoblastoma cells through activation of the pathways independent of estrogen receptors, i.e., intracellular $Ca^{2+}$ increase and generation of reactive oxygen species (ROS). However, the mechanism of tamoxifen to link increased intracellular $Ca^{2+}$ to ROS generation is currently unknown. Thus, in this study we investigated the possible involvement of calmodulin, a $Ca^{2+}$ activated protein, and $Ca^{2+}$/calmodulin-dependent protein kinase II in the above tamoxifen-induced events. Treatment with calmodulin antagonists (calmidazolium and trifluoroperazine) or specific inhibitors of $Ca^{2+}$/calmodulin-dependent protein kinase II (KN-93 and KN-62) inhibited the tamoxifen-induced apoptosis in a dose-dependent manner. In addition, these agents blocked the tamoxifen-induced ROS generation in a concentration-dependent fashion, which was completely suppressed by intracellular $Ca^{2+}$ chelation. These results demonstrate for the first time that, despite of its well-known direct calmodulin-inhibitory activity, tamoxifen may generate ROS and induce apoptosis through indirect activation of calmodulin and $Ca^{2+}$/calmodulin-dependent protein kinase II in HepG2 cells.

${\alpha}$-독으로 처리한 토끼창간막동맥에서 Norepinephrine과 GTP에 의한 마이오신 인산화의 증가에 대한 $Ca^{2+}$/calmodulin-dependent Protein Kinase II의 역할 (The Role of $Ca^{2+}$/Calmodulin-Dependent Protein Kinase II on the Norepinephrine and GTP-Increased Myosin tight Chain Phosphorylations in Rabbit Mesenteric ${\alpha}-toxin$ Permeabilized Artery)

  • 안희열;김헌식
    • 대한약리학회지
    • /
    • 제30권1호
    • /
    • pp.111-116
    • /
    • 1994
  • 수용체작동약물과 GTP에 의한 수축단백질의 칼슘이온의 감수성의 증가에 대하여 $Ca^{2+}$/calmodulin-dependent protein kinase II의 역할을 ${\alpha}$-독으로 처리한 토끼장간막동맥에서 조사하였다. $0.3\;{\mu}M$의 칼슘이온은 마이오신의 인산화를 시간의존적으로 증가시켰고 5분 이후부터 평형에 도달하였다. 한편, $10\;{\mu}M$의 norepinephine과 $10\;{\mu}M$의 GTP는 칼슘이온 존재하에 칼슘이온 단독에 의한 것 보다 더 마이오신의 인산화를 증가시켰는데, 5분 후에 최대에 달하였고 그 후는 감소하기 시작하여 20분 후에는 칼슘이온 단독에 의한 마이오신 인산화 증가와 거의 차이가 없었다. $Ca^{2+}$/calmodulin-dependent protein kinase II 억제제인 KN-62를 전처치하여 norepinephrine과 GTP에 의한 마이오신 인산화 증가의 변화를 경시적으로 관찰하였다. $10\;{\mu}M$ KN-62는 1분에서 norepinephrine과 $10\;{\mu}M$ GTP에 의한 마이오신의 인산화의 증가를 억제하였다. 그러나 5분에서 관찰되는 norepinephrine과 GTP에 의한 마이오신 인산화의 증가의 최대치에는 영향이 없었고 그 이후에도 KN-62는 아무 영향을 끼치지 못하였다. 이상과 같은 결과로 볼때 norepinephrine과 GTP에 의하여 일어나는 평활근 수축단백의 칼슘이온의 감수성의 증가는 이미 알려진 바와 같이 마이오신 인산화의 증가에 기인하며 이 증가는 일과성임을 확인하였다. 이때 $Ca^{2+}$/calmodulin-dependent protein kinase II의 역할은 시간의존적으로 norepinephrine과 GTP의 자극 초기에 관여되는 것으로 생각되며 그 이후에는 관여가 없는 것으로 사료된다.

  • PDF

칼슘/calmodulin-의존적 단백질 인산화 효소 II의 동물세포 주기에 따른 활성도 변화에 관한 연구 (Cell Cycle-Dependent Activity Change of Calcium/Calmodulin-Dependent Protein Kinase II)

  • 서경훈
    • 자연과학논문집
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 1997
  • 칼슘/calmodulin-의존적 단백질 인산화 효소 II (CaMK-II)는 세포의 여러 기능을 조절하는 다양한 단백질들을 인산화시키는 효소이다. 세포 내부의 칼슘의 농도는 세포의 주기에 따라 변하므로 CaMK-II의 활성도 역시 세포주기에 따라 변하는 지를 조사함으로 세포주기에서의 CaMK-II의 역할을 알아보려 하였다. NIH3T3 세포를 CaMK-II의 활성도에는 전혀 영향을 주지 않는 여러 가지 약제로 처리하여 세포주기상의 특정한 시점에 동일하게 정지시킨 후, 세포내의 CaMK-II 활성도를 합성 펩타이드기질을 이용하여 측정하였다. 또한 일정 시점으로부터 동조화된 세포내의 CaMK-II의 활성도의 변화를 측정하여 한 세포주기 동안 효소의 활성도 변화의 양상을 조사하였다. 세포주기상 각각 G0, G1, G1/S, G2/M기에 정지된 세포내의 CaMK-II 총활성도는 대조군과 차이가 없었으나 M기에서는 낮았다. 그러나 자가인산화에 의한 CaMK-II의 칼슘-비의존성 활성도는 M기에서 가장 높았다. 이러한 양상은 G1기에서부터 동조화된 세포내 CaMK-II의 칼슘-비의존성 활성도 변화 양상과도 일치하였다. CaMK-II의 생리학적 의미를 지닌 활성도는 인산화에 의한 calcium-비의존성 활성도임을 비추어 볼 때 M기에서 CaMK-II가 세포분열의 과정에서 중요한 기능을 하고 있음을 보여주고 있다.

  • PDF

Cell Cycle-Dependent Activity Change Of $Ca^{2+}/$Calmodulin-Dependent Protein Kinase II In NIH 3T3 Cells

  • Kim, Dae-Sup;Suh, Kyong-Hoon
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.212-218
    • /
    • 2001
  • Although the blockage of a cell cycle by specific inhibitors of $Ca^{2+}/$calmodulin-dependent protein kinase II (CaMK-II) is well known, the activity profile of CaMK-II during the cell cycle in the absence of any direct effectors of the enzyme is unclear. The activity of native CaMK-II in NIH 3T3 cells was examined by the use of cell cycle-specific arresting and synchronizing methods. The total catalytic activity of CaMK-II in arrested cells was decreased about 30% in the M phase, whereas the $Ca^{2+}$-independent autonomous activity increased about 1.5-fold in the M phase and decreased about 50% at the G1/S transition. The in vivo phosphorylation level of CaMK-II was lowest at G1/S and highest in M. The CaMK-II protein level was unchanged during the cell cycle. When the cells were synchronized, the autonomous activity was increased only in M. These results indicate that the physiologically relevant portion of CaMK-II is activated only in M, and that the net activation of CaMK-II is required in mitosis.

  • PDF

Control of $Ca^{2+}$- Influx by $Ca^{2+}$/Calmodulin Dependent Protein Kinase II in the Activation of Mouse Eggs

  • Yoon, Sook-Young;Kang, Da-Won;Bae, In-Ha
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.31-39
    • /
    • 2011
  • Change in intracellular $Ca^{2+}$-concentration ($[Ca^{2+}]_i$) is an essential event for egg activation and further development. $Ca^{2+}$ ion is originated from intracellular $Ca^{2+}$-store via inositol 1,4,5-triphosphate receptor and/or $Ca^{2+}$ influx via $Ca^{2+}$ channel. This study was performed to investigate whether changes in $Ca^{2+}$/calmodulin dependent protein kinase II (CaM KII) activity affect $Ca^{2+}$ influx during artificial egg activation with ethanol using $Ca^{2+}$ monitoring system and whole-cell patch clamp technique. Under $Ca^{2+}$ ion-omitted condition, $Ca^{2+}$-oscillation was stopped within 30 min post microinjection of porcine sperm factor, and ethanol-induced $Ca^{2+}$ increase was reduced. To investigate the role of CaM KII known as an integrator of $Ca^{2+}$- oscillation during mammalian egg fertilization, CaM KII activity was tested with a specific inhibitor KN-93. In the eggs treated with KN-93, ethanol failed to induce egg activation. In addition, KN-93 inhibited inward $Ca^{2+}$ current ($I_{Ca}$) in a time-dependent manner in whole-cell configuration. Immunostaining data showed that the voltage-dependent $Ca^{2+}$ channels were distributed along the plasma membrane of mouse egg and 2-cell embryo. From these results, we suggest that $Ca^{2+}$ influx during fertilization might be controlled by CaM KII activity.

Calcium/calmodulin-dependent protein kinase II is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rat nucleus accumbens

  • Kai Wen Xi;De Duo Chen;Xin Geng;Yan Bian;Min Xin Wang;Hui Bian
    • The Korean Journal of Pain
    • /
    • 제36권2호
    • /
    • pp.163-172
    • /
    • 2023
  • Background: Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats. Methods: Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting. Results: Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance. Conclusions: This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.

Purification and Properties of Novel Calcium-binding Proteins from Streptomyces coelicolor

  • Chang, Ji-Hun;Yoon, Soon-Sang;Lhee, Sang-Moon;Park, I-Ha;Jung, Do-Young;Park, Young-Sik;Yim, Jeong-Bin
    • Journal of Microbiology
    • /
    • 제37권1호
    • /
    • pp.21-26
    • /
    • 1999
  • Two novel calcium-binding proteins, named CAB-I and CAB-II, have been isolated from Streptomyces coelicolor. Purification of the calcium-binding proteins involved heat treatment, fractionation with ammonium sulfate, acid treatment, anion exchange and hydrophobic interaction column chromatography, FPLC gel filtration, and preparative isoelectric focusing. A chelex competitive assay and 45Ca autoradiography verified the calcium-binding ability of the proteins. The major band CAB-II has an apparent molecular weight of 26,000 determined by SDS-polyacrylamide gel electrophoresis and 340,000 determined by gel filtration. The isoelectric point of this molecule showed the acidic nature of the molecule. N-terminal amino acid sequence analysis shows homology to rat Ca2+/calmodulin-dependent protein kinase-II (CAB-II) and yeast phosphoprotein phosphatase (CAB-I).

  • PDF

Type II Cell 분리체로부터 Surfactant 인지질의 분비를 매개하는 신호변환 기전 (Signal Transduction Mechanisms Mediating Surfactant Phospholipid Secretion in Isolated Type II Cell)

  • 박성수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권2호
    • /
    • pp.123-127
    • /
    • 1996
  • Secretion of surfactant phospholipid can be stimulated by a variety of agonists acting via at least three different signal transduction mechanisms. These include the adenylate cyclase system with activation of cAMP-dependent protein kinase; activation of protein kinase C either directly or subsequent to activation of phosphoinositide-specific phospholipase C and generation of diacylglycerols and inositol trisphosphate; and a third mechanism that involves incresed $Ca^{2+}$ levels and a calmodulin-dependent step. ATP stimulates secretion via all three mechanisms. The protein kinase C pathway is also coupled to phopholipase D which, acting on relatively abundant cellular phospholipids, generates diacylglycerols that further activate protein kinase C. Sustained protein kinase C activation can maintain phosphatidylcholine secretion for a prolonged period of time. It is likely that interactions between the different signaling pathways have an important role in the overall physiological regulation of surfactant secretion.

  • PDF