• Title/Summary/Keyword: $C_2H_4$ production

Search Result 2,660, Processing Time 0.033 seconds

Production of Red Pigment from Marine Bacterium Utilizing Colloidal Chitin. (Colloidal Chitin을 자화하는 해양세균으로부터 적색색소의 생산)

  • 류병호;김민정
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.264-269
    • /
    • 2000
  • This study is that of providing a fairly practical practival guide to the use of natural pigment in food industry. A strain isolated from marine resources was carried out the production of red pigment. The pigment showed UV absorption maxima at 520 and 550 nm. The color intensity in aqueous solution was fairly stable in the ranges of pH 5~8. The strain KS-97 produced a maximum yield of red pigment at$ 25^{\circ}C$ for 72 hrs with pH 7.0. The strain KS-97 was iden-tified a Bacillus sp. based on morphological and biochemical characterization such as a rod from, motility, spore for-mation, Gram positive and catalase production. The production of red pigment indicated that the strain Ks-97 utilized at thigh concentration of colloidal chitin as carbon sources obtained maximum yield of red pigment at $25^{\circ}C$ for 72 hrs. The highest production of red pigment was observed with cultivation in medium containing 20% colloi-dal chitin, 2.5g polypeptone, 2.5g yeast extract, 1.0g $KH_2$$PO_4$, 0.01g $MgSO_4$.$6H_2$O, 0.01g $ZnSO_4$, 0.01 g $MnSO_4$(per 1).

  • PDF

Production and Characterization of Cholesterol Oxidase from Streptomyces sp. No.4 (방선균으로부터 Cholesterol Oxidase의 생산 및 특성)

  • 김현수;고희선
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.174-180
    • /
    • 1999
  • An actinomycetes strain No.4 which produce the cholesterol oxidase(EC 1.1.3.6), was isolated from soil and identified as Streptomyces sp. based on taxonomic studies. The conditions of cholesterol oxidase production and enzymatic properties were investigated. The optimum composition of medium for production of the enzyme was 1% soluble starch, 2% corn steep liquor, 0.1% $KH_2PO_4$, 0.1% $NaNO_3$ and 0.05% $MgSO_4$ (pH 7.0). The optimum pH and temperature of the cholesterol oxidase were pH 6.0~7.5 and $37^{\circ}C$, respectively. The enzyme was stable in the range of pH 6.0~9.0. The isoelectric point determined by multichambered electrofocusing unit was in the range of pH 6.0~6.5.

  • PDF

The Preventive Effect of 5-Iodo-6-Amino-1,2-Benzopyrone on Apoptosis of Rat Heart-derived Cells induced by Oxidative Stress

  • Kyoumg A Chung;Ji Seung Back;Jae Hyun Jang
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • Ischemia-reperfusion results in excess reactive oxygen species (ROS) that affect myocardial cell damage. ROS production inhibition is effectively proposed in treating cardiovascular diseases including myocardial hypertrophy. Studies have shown that oxidizing cultured cells in in vitro experiments gradually decreases the permeability of mitochondrial membranes time- and concentration-dependent, resulting in increased mitochondrial membrane damage due to secondary ROS production and cardiolipin loss. However, recent studies have shown that 5-iodo-6-amino-1,2-benzopyrone (INH2BP), an anticancer and antiviral drug, inhibited peroxynitrite-induced cell damage in in vitro and alleviated partial or overall inflammation in animal experiments. Therefore, in this paper, we studied the preventive effect of INH2BP on H9c2 cells derived from mouse heart damaged by oxidative stress using 700 μM of hydrogen peroxide. As a result of oxidative stress to H9c2 cells by hydrogen peroxide whether the treatment of INH2BP or not, hydrogen peroxide caused serious damage in H9c2 cells. These results were confirmed with cell viability and Hoechst 33342 assays. And this damage was through cell death. However, it was confirmed that H9c2 cells pretreated with INH2BP significantly reduced cell death by hydrogen peroxide. In addition, measurements with DCF-DA assay to determine whether ROS is produced in H9c2 cells treated with only hydrogen peroxide produced ROS significantly, but H9c2 cells pretreated with INH2BP significantly reduced ROS production by hydrogen peroxide. Taken together, it is believed that INH2BP can be useful for the prevention and treatment of cardiovascular diseases induced through oxidative stress such as heart damage caused by ischemia/reperfusion.

Suppressive Effect of SaengRyoSaMulTang on Activated RBL-2H3 Mast Cells (RBL-2H3 비만세포의 알레르기 염증 반응에 미치는 생료사물탕(生料四物湯)의 영향)

  • Son, Mi-Ju;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.28-39
    • /
    • 2011
  • Objectives: SaengRyoSaMulTang is a herbal formula in Oriental Medicine, known anti-allergens. However, its mechanism and cellular targets have not been found yet. Thus the study has developed to investigate the suppressive effect of SaengRyoSaMulTang. Methods: In the study, cellular viability, IL-4, IL-13 mRNA expression, IL-4, IL-13 production, manifestations of GATA-1, GATA-2, NF-AT1, NF-AT2, AP-1 and NF-${\kappa}$B p65 transcription factors were examined by Real-Time PCR, ELISA analysis and western blotting. Results: As a result of treating with SaengRyoSaMulTang extract(SRSMT), the study has shown that the amount of Th2 cytokines, which include PI induced IL-4 and IL-13, plays a significant role in suppressing effect. RBL-2H3 mast cells significantly suppressed the PI-induced Th2 cytokine production including IL-4 and IL-13 in a dose dependent manner. PI-induced IL-4 and IL-13 production was significantly suppressed by SRSMT intervention. Western blot analysis of transcription factors involving IL-4 and IL-13 expression also revealed a prominent decreases of mast cell's specific transcription factors including GATA-1, GATA-2, NF-AT2, c-Jun and c-Fos, but NF-${\kappa}$B p65. Conclusions: The study suggests that the anti-allergenic activities of SRSMT may regulate the transcription factors GATA-1, GATA-2, NF-AT2, c-Jun and c-Fos inhibiting Th2 cytokines IL-4 and IL-13 in mast cells.

Cultural Condition of Pseudomonas mendocina for Polysaccharide Production (Pseudomonas mendocina 에 의한 Polysaccharide 생산)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.619-623
    • /
    • 1989
  • The cultural condition of Pseudomonas mendocina for polysaccharide production was examined. The optimal medium contains following composition per liter of distilled water: Sucrose 23.75g, $(NH_4)_2SO_4$ 1.57g, Yeast extract 0.5g, $KH_2PO_4\;2.9g,\;MgSO_4.\;7H_2O\;1.0g,\;CaCO_3$ 2.5g. The optimum temperature and pH were $30^{\circ}C$ and 6.5. At the condition. Ps mendocina produced 5.98g/l of polysaccharide. The culture viscosity after 3 days was 191mPa.s at $70sec^{-1}$. The product yield $(Y_{p/s})$ and specific productivity $(Q_p)$ were 25.18% and 32.83mg/g-cell/h.

  • PDF

A Study on the Effect of Initial pH and Cultivation Temperature of Substrate on the Biomass Production and COD-reduction in the Yeast Cultivation in Sugar Beet Stillages (사탕무 알콜증류폐액을 기질로 효모균체를 생산할 때 기질의 초기 pH와 배양온도가 균체생산량과 COD감소에 미치는 영향)

  • Lee, Ki Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.100-106
    • /
    • 2005
  • Sugar beet stillages were used as a substrate for the production of single cell protein by the thermotolerant yeasts Candida rugosa, Kluyveromyces marxianus and C. utilis. The biomass production increased in accordance with the increase of pH-value, but protein content decreased. C. rugosa showed the highest crude protein production as 3.68g/l and C. utilis 2.9g/l, Kl. marxianus 2.30g/l, respectively. The rate of COD reduction in stillage versus crude protein production of C. rugosa showed the highest value as 0.35~0.39g/l as a good strain for single cell protein production using sugar beet stillages.

  • PDF

Isolation of Microorganism Producing Flocculant and Its Culture Conditions (응집제 생산 미생물의 분리 및 배양조건)

  • 남진석;권기석
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.421-427
    • /
    • 1995
  • A fungal strain, designated Aspevgillus sp. JS-42, was isolated and shown to produce an extracellular polysaccharide used as a bioflocsulant. The optimal medium composition for the production of flocculant with Aspergillus sp. JS-42 was glucose 3.0%, yeast extract 0.2%, $(NH_4)_2S0_4 0.1%, CaCI_2.2H_2 0.05%$ in distilled water. The optimum culture temperature and optimum culture pH for the production of the flocculant were $25^{\circ}C$ and pH 7.0, respectively. The highest production of flocculant was observed after 90 hours of cultivation at the optimal condition. The flocculant could efficiently flocculaled the tested solids suspended in aqueous solution and was stable at high temperature($100^{\circ}C$) and to pH range of from 2 to 10. The flocculant seems to be a kind of high viscous polysaccharide.

  • PDF

The Optimal Conditions for Fibrinolytic Enzyme Production from Streptomyces sp. JK-20 (Streptomyces sp. JK-20유래 혈전용해효소의 생산조건)

  • 정영기;전홍기;김유정
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • An actinomycetes which produces fibrinolytic enzyme was isolated from soil. Characteristics of the isolated strain and the optimal conditions for the productions of fibrinolytic enzyme were summarized as follows; The fibrinolytic enzyme production strain generates gray airmycelium and had about 0.6~0.8$\times$0.4~0.8${\mu}{\textrm}{m}$ cylindrical spore, smooth surface and formed spore chain of 10~40 spores. We have identified this strain as Streptomyces sp. JK-20. This strain was able to grow up at 20~32$^{\circ}C$ and its optimum growth temperature and pH was 24$^{\circ}C$ and pH 6.0, respectively. The optimal conditions for porducing fibrinolytic enzyme; carbon source, nitrogen source, metal ions and phosphorous sources was 1% xylose, 0.5% yeast extract, 0.5% polypepton, 0.1% MgSO$_4$.7$H_2O$ and 0.1% NaH$_2$PO$_4$.2$H_2O$, respectively. This strain showed the highest productivity of fibrinolytic enzyme after the fourth day under such optimal culture conditions.

Isolation of Fibrinolytic Enzyme and β-Glucosidase Producing Strains from Doenjang and Optimum Conditions of Enzyme Production (된장으로부터 혈전용해능 및 β-Glucosidase 활성을 가진 균주 분리 및 효소생산 배지의 최적화)

  • 나경수;오성훈;김진만;서형주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.439-442
    • /
    • 2004
  • Bacterial strains showing the firinolytic and $\beta$-glucosidase activity were screened from Doeniang. The strain of KH-15 revealed a high level of fibrinolytic and $\beta$-gluocosidase activity. The isolated bacterium was identified and desingnated as Bacillus sp. KH-15. The carbon, nitrogen and salts sgnificantly influenced te fibrinolytic enzyme and $\beta$-glucosidase production. The optimized composition of medium appeared to be 2% glucose, 0.5% yeast extract and 0.1% calcium chloride. The optimum pH and temperature for fibrinolytic enzyme and $\beta$-glucosidase activities were pH 7∼8, 4$0^{\circ}C$ and pH 6∼8, 30∼4$0^{\circ}C$, respectively.

Studies on the hemolysin produced by Vibrio Vulnificus ys-1 (Vibrio vulnificus ys-1이 생산하는 hemolysin에 관한 연구)

  • 오양호;차미선;김민정
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.145-157
    • /
    • 1998
  • We isolated 100 Vobrio sp. from marine products and sea from July to September, 1997. We attemped on purification of hemolysin produced by Vibrio sp. The growth, hemolysin production patterns by the 100 strains of Vibrio sp. showed identical, in general. V. unlnificus ys-1 produced hemolysis as the higtest titer. The optimal culture conditions for the hemolysin production by the V. vunificus ys-1 are followings; 1. Hemolysin production was optimal dering the late exponetial phage. 2. Maximal growth, hemolysin production were in heart infusion broth. 3. Maximal yields of hemolysin was obtained when the heart infusion broth had an intial pH of 8.0, 3$0^{\circ}C$, 3% NaCL. Hemolysin was purified from culture filtrate of the strain by ammonium sulfate recipitation, ion exchange and hydrophobic interaction chromatography. The results were as follows; 1. Hemogeneity of the purified hemolysin was demonstrated by revealing single band on SDS-PAGE. The molecular weight of purified hemolysin was 45KDa. 2. The absorbance rattern in ultraviolet wsa typical of those seen with most proteinb with 280nm. 3. Purified hemolysin was atable at 5$0^{\circ}C$ but 7$0^{\circ}C$ of the acivity was lost by heating for 30 min at 6$0^{\circ}C$/ Optimal temperature of purified hemolysin was 35$^{\circ}C$. 4. Purified hemolysin was stable at the pH range of 6~9, but in the less the pH5.0. above the pH 9.0, the hemolysin activity was lost completely.

  • PDF