• Title/Summary/Keyword: $C_{12}E_8$ nonionic surfactant

Search Result 4, Processing Time 0.025 seconds

Solubilization of Mixture of Hydrocarbon Oils by C12E8 Nonionic Surfactant Solution (C12E8 비이온 계면활성제 수용액에 의한 탄화수소 오일 혼합물의 가용화 특성에 관한 연구)

  • Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • The equilibrium solubilization capacity of the mixture of hydrocarbon oils by $C_{12}E_8$ nonionic surfactant micellar solution was measured at $23^{\circ}C$ by gas chromatography (GC) analysis. Experimental results indicated that the solubilization capacity for pure alkanes was found to decrease almost linearly with the alkane carbon number (ACN) of the hydrocarbon oil. For the binary mixture systems of the hydrocarbon oils both selective and nonselective solubilization behaviors were observed depending on the difference in ACN of the two hydrocarbon oils. Equilibrium solubilization tests for the hydrocarbon oil mixtures in $C_{12}E_8$ surfactant solutions such as the three n-octane/n-nonane, n-nonane/n-decane and n-decane/n-undecane mixture systems suggest almost non-selective solubilization. On the other hand, the n-octane/n-decane and n-octane/n-undecane systems, where difference in ACN of the two hydrocarbon oils is greater than 1, selective solubilization in favor of n-octane was conclusively demonstrated.

Solubilization of Hydrocarbon Oils by C12E8 Nonionic Surfactant Solution (C12E8 비이온 계면활성제 수용액에 의한 탄화수소 오일의 가용화에 관한 연구)

  • Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.219-225
    • /
    • 2007
  • The equilibrium solubilization capacity of pure hydrocarbon oils by 2.5 wt% $C_{12}E_8$ nonionic surfactant solution was measured at $30^{\circ}C$ by gas chromatography (GC) analysis. Experimental results indicated that the molar solubilization ratio (MSR) for pure alkanes was found to decrease almost linearly with the alkane carbon number (ACN) of the hydrocarbon oil. For the binary mixture systems of the hydrocarbon oils both selective and nonselective solubilization behaviors were observed depending on the difference in carbon number of the two hydrocarbon oils. Equilibrium solubilization tests for the two n-octane/n-nonane and n-nonane/n-decane mixture systems in $C_{12}E_8$ surfactant solutions suggest slightly selective solubilization in favor of n-octane, but the small difference in solubilization rates between two hydrocarbon oils does not allow ruling out non-selective solubilization for these particular systems. This is certainly not the case for the n-octane/n-decane mixture, for which selective solubilization was conclusively demonstrated by GC analysis data.

Surfactant Washing of Organics from a Contaminated Site I. Clean Up of Hydrocarbon Contaminated Soils (Surfactant washing에 의한 토양 내의 유기물 제거에 관한 연구 I. 탄화수소로 오염된 토양의 정화)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.357-364
    • /
    • 1997
  • The objective of this study was to find optimum nonionic surfactants for clean up of soils contaminated by hydrocarbon oils. PIT(phase inversion temperature) measurements in ternary systems containing pure hydrocarbons, pure nonionic surfactants, and water were carried out and interfacial tensions were measured as a function of time for n-hexadecane oil drops brought into contact with various mixtures of nonionic surfactant and water. Batch surfactant washing experiments were performed based on the measurement, results of PIT and interfacial tension and the results showed that maximum removal of n-hexadecane occurred at the PIT of the system. For the $C_{12}E_5(C_{12}H_{25}O(CH_2CH_2O)_5H)$ system, maximum n-hexadecane removal of 73.4% occurred at the PIT of $52^{\circ}C$. In contrast, n-hexadecane removal at $25^{\circ}C$ and at $60^{\circ}C$, each corresponding to the conditions of below PIT and above PIT of the system, was found to be 57.1% and 57.0% respectively. The maximum removal of a hydrocarbon at the PIT of a system, where the hydrophilic and hydrophobic properties are balanced, was found to be due to the existence of high oil solubilization into a middle-phase microemulsion and ultralow interfacial of the order of $10^{-2}$ to $10^{-3}$ dyne/cm between middle-phase microemulsion and excess oil phase.

  • PDF

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Polar Oils and Nonionic Surfactant (극성 오일, 비이온성 계면활성제를 포함한 계에서의 Videomicroscopy를 이용한 동적 거동에 관한 연구)

  • Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.473-481
    • /
    • 1997
  • Enhanced videomicroscopy was used to observe the dynamic behavior which occurred when water containing pure nonionic surfactant was carefully contacted with equal volumes of polar oils such as oleyl alcohol and oleic acid at various temperatures. A key component of the system is a vertical-stage microscope which provides for stable interfaces by locating the oil above the denser aqueous phase. This arrangement allowed intermediate phases formed at the surface of contact to be clearly observed, as well as any spontaneous emulsification which developed. Contacting experiments with $C_{12}E_5$ as the surfactant and with pure oleyl alcohol and oleic acid soils showed little activity below the cloud point but vigorous activity at higher temperatures including formation of an intermediate lamellar liquid crystalline phase. Diffusion path theory, which allows prediction of spontaneous emulsification resulting from diffusion and of intermediate phase formation during contacting processes, was used to understand the dynamic behavior seen during contacting experiments. Tentative diffusion paths for the contacting experiments with pure oleyl alcohol were presented with the aid of a partial phase diagram of the oleyl alcohol-water-$C_{12}E_5$ system.

  • PDF