• Title/Summary/Keyword: $CO_2/H_2O$ Co-Reduction

Search Result 317, Processing Time 0.029 seconds

Effects of Vacuum Annealing on the Structural Properties of Sputtered Vanadium Oxide Thin Films (스퍼터된 바나듐 산화막의 구조적 특성에 미치는 진공 어닐링의 효과)

  • Whang, In-Soo;Choi, Bok-Gil;Choi, Chang-Kyu;Kwon, Kwang-Ho;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.70-73
    • /
    • 2002
  • Thin films of vanadium oxide($VO_{x}$) have been deposited by r.f. magnetron sputtering from $V_{2}O_{5}$ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio of 0% and 8% is adopted. Crystal structure, chemical composition, molecular structure and optical properties of films sputter-deposited under different oxygen gas pressures and in-situ annealed in vacuum at $400^{\circ}C$ for 1h and 4h are characterized through XRD. RBS, FTlR and optical absorption measurements. The films as-deposited are amorphous and those annealed for time longer than 4h are polycrystalline. $V_{2}O_{5}$ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric $V_{2}O_{5}$. When annealed at $400^{\circ}C$, the as-deposited films are reduced to a lower oxide. It is observed that the oxygen atoms located on the V-O plane of $V_{2}O_{5}$ layer participate more readily in the oxidation and reduction process. The optical transmission of the films annealed in vacuum decreases considerably than the as-deposited films and the optical absorption of all the films increases rapidly between 400 and 550nm.

  • PDF

Study of Oxygen Carriers with Single Metal Oxides for Chemical-Looping Combustion (Chemical-looping combustion을 위한 단일금속산화물인 산소운반체에 관한 연구)

  • Lee, J.B.;Park, J.S.;Choi, S.I.;Song, Y.W.;Yang, Y.S.;Kim, Y.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.258-267
    • /
    • 2003
  • A new kind of oxygen carrier material is tested for chemical-looping combustion. NiO, CoO, $Fe_2O_3$ is chosen as metal oxide and YSZ as a binder. Hydrogen fuel is reacted with metal oxide (reduction of metal oxide) and then the reduced metal is successively oxidized by air. Dissolution method is examined to prepare the oxygen carriers. The effects of reaction temperature are measured by a TGA, mechanical strength and regenerability after 10 cycle are examined. $Fe_2O_3/YSZ$ oxygen carrier is bested in mechanical strength and we consider that NiO/YSZ after 3rd cycle are good oxygen carrier in according to reactor design.

Effect of SiC Dispersion of $\beta$-Sialon Prepared from Wando Pyrophylite (완도납석으로부터 제조한 $\beta$-Sialon에 대한 SiC의 복합화 효과)

  • Lee, Hong-Lim;Kim, Shin;Lee, Hyung-Jik
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.261-267
    • /
    • 1988
  • $\beta$-Sialon powder was prepared by the reduction-nitridation reaction from the mixture of Wando Pyrophyllite and carbon black at 135$0^{\circ}C$ in $N_2$ atmosphere. $\beta$-SiC powder was added to the prepared $\beta$-Sialon powder to make $\beta$-Sialon-SiC composite. The $\beta$-Sialon-SiC composites were sintered pressurelessly at 175$0^{\circ}C$ for 2h, using $Y_2O_3$ and $ZrO_2$(monoclinic) as sintering aids. Comparatively higher values of the fracture toughness (3.8 MN/㎥/2), M.O.R. (470 MN/$m^2$) and vickers microhardness (13.7 MN/$m^2$) were obtained when 10 wt% $Y_2O_3$ was added as a sintering aid. The improved fracture toughness and M.O.R. are assumed to be the results of crack deflection and crack branching by the second phase SiC particles.

  • PDF

Synthesis and Characterization of Fiberous AlN by Electrospinning (전기방사에 의한 섬유상 질화알루미늄 합성 및 특성 평가)

  • Chun, Seung-Yeop;Hwang, Jin-Ah;Chu, Jae-Uk;Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.441-446
    • /
    • 2017
  • Aluminum nitride fibers were synthesized by carbothermal reduction and nitridation of precursor fibers obtained by electrospinning. The starting materials used to synthesize the AlN fibers were $Al(NO_3)_3{\cdot}9H_2O$ and urea. Polyvinylpyrrolidone with increasing viscidity was used as the carbon source to obtain a composite solution. The mixed solution was drawn into a plastic syringe with a stainless steel needle, which was used as the spinneret and connected to a 20 kV power supply. A high voltage was supplied to the solution to facilitate the formation of a dense net of fibers on the collector. The precursor fibers were dried at $100^{\circ}C$ and then heated to $1,400^{\circ}C$ for 1 h in a microwave furnace under $N_2$ gas flow for the carbothermal reduction and nitridation. X-ray diffraction studies indicated that the synthesized fibers consisted of the AlN phase. Field emission scanning electron microscopy studies indicated that the diameter of the calcined fibers was approximately 100 nm.

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Devised New Amorphous Alloys for Magneetoelastic Resonators (Magneetoelastic Resonators에 사용되는 새로운 비정질 함금)

  • C. K. Kim; C. K. Yoo; R.C. O'Handley
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.245-250
    • /
    • 1998
  • There is clear pressing need to reduce bias field(Ha,) used on linear magenetomechanical resonator tag by at least a factor of two to allow low-bias operation near the frequency minimum since reducing Ha causes a dramatic increase in well depth, which implies increased stability. However, this makes it more difficult to maintain tight frequncy specs. It can be solved by a reduction of magnetomechanical coupling(k). We determined from an equivalent circuit model that optimal reduced, k, is near 0.3 Also, We determiend the material properties($lambda_s$, :saturated magenetostriction, $M_s$, and,$H_a$) that give k=0.3. From these evaluations, we suggested that on optimal comosition with adequate mathrial properties is $Fe_{55}Co_{15}Cr_6Nb_2B_{18}Si_4$.

  • PDF

Preparation of Copper Fine Particles from Waste Copper by Chemical Reduction Method (폐동분으로부터 화학환원법에 의한 Cu 미립자 제조)

  • Kim, Yoon-Do;Song, Ki Chang;Song, Jong-Hyeok
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.560-565
    • /
    • 2007
  • Copper fine particles, ranging from $0.11{\mu}m$ to $0.64{\mu}m$ in average size, were prepared by a chemical reduction method using hydrazine ($N_2H_4$) as a reduction agent in waste copper solutions. The effect of the amount of hydrazine addition was investigated on the properties of the obtained powders. Also, the effect of the addition of dispersing agents [Polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP)] during particle synthesis was studied. The powders, obtained from 1 M waste copper solutions, showed the mixtures of Cu and $Cu_2O$ crystals at low hydrazine addition amounts of 0.8 mol and 1.0 mol, while those exhibited pure Cu crystals at adequate hydrazine addition amount of 0.12 mol. The average size of the Cu powders decreased with increasing the concentrations of hydrazine and dispersing agents. The addition of PVA to the solutions as a dispersing agent was more effective than that of PVP in preventing the aggregation of particles.

Development of the Pilot System for Radioactive Laundry Waste Treatment Using UV Photo-Oxidation Process and Reverse Osmosis Membrane

  • Park, Se-Moon;Park, Jong-Kil;Kim, Jong-Bin;Shin, Sang-Woon;Lee, Myung-Chan
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.506-511
    • /
    • 1999
  • The pilot system for radioactive liquid laundry waste was developed with treatment capacity, 1ton/hr and set up in the Yong Kwang unit #4. The system is composed of tank module, RO systems and a UV/$H_2O$$_2$photo-oxidation unit. The RO system consists of the BW unit (low-pressure RO for brackish water desalination) and the SW unit (high-pressure RO for seawater desalination). The BW unit possesses 4 RO membranes and it can reduce the feed water volume down to 1/10. This concentrated feed water can be reduced again up to 1/10 in its volume in the SW unit composed of 4 RO membranes. The UV/$H_2O$$_2$ photo-oxidation process unit was used for the detergent degradation. The operation of the pilot system was carried out and verified in its capability through the continuous operation and concentration operation using the actual liquid waste from the power plant. The design criteria and data for industrialization were yielded. The efficiency of the UV/$H_2O$$_2$ photo-oxidation process and the optimum operational procedure were evaluated. The decontamination factors for radioactive cobalt and cesium were measured. This on-site test showed the experimental result in the DF$\geq$300 and volume reduction factor$\geq$100.

  • PDF