• Title/Summary/Keyword: $CO_2$ use efficiency

Search Result 426, Processing Time 0.025 seconds

Effect of $SO_2$ on Leaf Tip Blight of Ginkgo biloba caused by Coniothyrium sp. (은행나무의 잎끝마름병에 미치는 $SO_2$ 의 영향)

  • Kang, Yun-Jie;Park, So-Hong;Lee, Du-Hyung;Bae, Gong-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.179-184
    • /
    • 1999
  • To examine the relationship between air pollution and occurrence of disease in plants, we investigated the alteration of physiology and biochemistry of Ginkgo biloba by inoculating with Coniothyrium sp. and fumigating with 0.1 ${\mu}l/l\;SO_{2-}$ Visual damage did not appear but photosynthesis, $CO_2$ use efficiency(CUE) and water use efficiency(WUE) were reduced when G. biloba was exposed to $SO_{2-}$for 7days (8 hours a day). When inoculated with Coniothyrium sp., the seventies of damage in G. biloba showed a threefold difference between $SO_{2-}$ treatment (SI) and $SO_{2-}$ free treatment (SFI) at day 42 from initial inoculation. Little difference was observed in sugar contents that may be used pathogens feed, among control, SFI and SI. In spite of the reduction in photosynthetic rate, sugar contents and CUE were maintained. WUE was enhanced 13% more at SI than SFI. The $CO_2$fixation boosted because of enhanced WUE, and thus sugar synthesis was not affected. In addition, sugar transport seems to be retarded for some internal alteration. Consequently, the severity of SI was more serious than that of SFI because Coniothyrium sp. easily invades into the physical texture of G. biloba weakened by $SO_2$ fumigation and because sugar was accumulated in leaves of G. biloba.

  • PDF

국내 화력발전산업의 연료의 효율적 배분과 CO2 저검규모 추정

  • Lee, Myeong-Heon
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.3-25
    • /
    • 2012
  • Generally speaking, firms, faced with a regulatory environment, are likely to use more or less inputs than optimal level due to allocative inefficiency of inputs. This paper, first, tests allocative efficiency of fuel inputs and calculates the divergence between the actual and optimal levels of each fuel input conditional on the optimal level of capital stock in Korean thermal power industry. Then, given that each fuel is efficiently allocated. potential reduction of $CO_2$ is estimated over the period 1987~2008. The null hypothesis of allocative efficiency with respect to all fuels is rejected, indicating that thermal power plants fail to attain cost minimization subject do market prices. Allocative efficiency between each pair of fuels is also tested; efficient uses of fuels relative to each other are all rejected. Empirical results indicate that coal and gas are used more and oil is used less than optimal level. On average, more than 10 million tons of $CO_2$ per year could be reduced by achieving allocative efficiency of fuels.

  • PDF

Effects of Elevated CO2 Concentration and Temperature on Physiological Characters of Liriodendron tulipifera (CO2농도 및 온도 상승이 백합나무의 생리적 특성에 미치는 영향)

  • Lee, Ha-Soo;Lee, Solji;Lee, Jae-Cheon;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study aimed to investigate the growth and physiological characters of Liriodendron tulipifera seedlings in responses to two different levels of elevated air temperature and $CO_2$ concentration. The seedlings were grown in environment-controlled growth chambers with two combinations of air temperature and $CO_2$ conditions: (1) $22^{\circ}C$ + ambient $CO_2$ $380{\mu}mol\;mol^{-1}$ and (2) $27^{\circ}C$ + $770{\mu}mol\;mol^{-1}$. Physiological characters such as growth, photosynthesis, and water use efficiency, were monitored for 85 days. The seedlings under the elevated treatment showed a greater amount of growth in tree height, compared with those under the control. Regarding the characteristics of assimilatory organs, the elevated treatment resulted in a greater amount of total leaf area, leaf unfolding, and dry weight per leaf area. No significant differences were found in photosynthesis capacity between the two treatments. The increase in water use efficiency with increased intercellular $CO_2$ partial pressure appeared overall lower in the seedling under the elevated treatment, compared with those under the control. The total leaf area of the seedlings under the elevated treatment was larger than that under the control, indicating a higher amount of photosynthesis. In addition, an increase of root growth was noted under the elevated treatment. A resistance mechanism of water stress may be attributed to a higher amount of organ growth as well as the tree height under the elevated treatment than the control.

Effects of CO2 and Climate on water use efficiency and their linkage with the climate change

  • Umair, Muhammad;Kim, Daeun;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.149-149
    • /
    • 2019
  • Gross Primary production (GPP) and evapotranspiration (ET) are the two critical components of carbon and water cycle respectively, linking the terrestrial surface and ecosystem with the atmosphere. The ratio between GPP to ET is called ecosystem water use efficiency (EWUE) and its quantification at the forest site helps to understand the impact of climate change due to large scale anthropogenic activities such as deforestation and irrigation. This study was conducted at the FLUXNET forest site CN-Qia (2003-2005) using Community land model (CLM 5.0). We simulated carbon and water fluxes including GPP, ecosystem respiration (ER), and ET using climatic variables as forcing dataset for 30 years (1981-2010). Model results were validated with the FLUXNET tower observations. The correlation showed better performance with values of 0.65, 0.77, and 0.63 for GPP, ER, and ET, respectively. The model underestimated the results with minimum bias of -0.04, -1.67, and -0.40 for GPP, ER, and ET, respectively. Effect of climate 'CLIM' and '$CO_2$' were analyzed based on EWUE and its trend was evaluated in the study period. The positive trend of EWUE was observed in the whole period from 1981-2010, and the trend showed further increase when simulated with rising $CO_2$. The time period were divided into two parts, from 1981-2000 and from 2001 to 2010, to identify the warming effect on EWUE. The first period showed the similar increasing trend of EWUE, but the second period showed slightly decreasing trend. This might be associated with the increase in ET in the wet temperate forest site due to increase in climate warming. Water use efficiency defined by transpiration (TR) (TWUE), and inherent-TR based WUE (IT-WUE) were also discussed. This research provides the evidence to climate warming and emphasized the importance of long term planning for management of water resources and evaporative demand in irrigation, deforestation and other anthropogenic activities.

  • PDF

The Core Urban Design Strategies of Tall Building - Low Carbon Community

  • Liu, Enfang;Fan, Wenli;Pan, Jianing;Li, Jianqiang
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • Tall building has some controversial aspects with low carbon city, but it is still a sensible choice for the metropolitan city. This paper aims to develop holistic urban design strategies to minimize impacts on the environment, increase energy efficiency and improve the quality of living in tall building communities by utilizing tall building characteristics. It puts forward the concept of integrated tall building-low carbon community design from the perspective of urban design, and summarizes five core strategies: Temporal state based on energy use, Complementary energy use state based on functions, Spatial state based on regional environment features, Transportation state based on low-carbon lifestyle and Waste utilization state based on tall building characteristics. It also applies the strategies to a practical project. The results show that the proposed urban design strategies are available approaches to mitigate the side effects of tall building on low carbon city.

The Analysis of Potential Reduction of CO2 Emission In Soil and Vegetation due to Land use Change (토지이용변화에 따른 식생 및 토양의 이산화탄소 저감잠재량 분석)

  • Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Land Use Changes (LUCs) have effects on greenhouse gas emissions and carbon stocks in soil and vegetation. Therefore, predictions for LUC are very important for achieving quantitative targets of $CO_2$ reduction rates. Some research exists on carbon fluxes and carbon cycles to estimate carbon stocks in terrestrial ecosystems in Korea. However, these researches have limitations in terms of helping us understand future potential reductions of $CO_2$ that reflect the influence of LUC. The aim of this study is to analyze the reduction levels of $CO_2$ emissions while considering LUC scenarios that effect carbon fluxes for LCS basic study in the year 2030. In this study, a common approach to model the effects of LUC on carbon stocks is the use of CA-Markov technical process with LUC patterns in the past. Potential reduction of $CO_2$ is calculated by change of land use that contains different soil organic carbon, each land use type, and biomass in vegetation. An IPCC analytical method of natural carbon sink and coefficient results from previous study in Korea is used as a calculation method for potential reduction of $CO_2$. As a result, 12,419 KtC will be reduced annually, which is 8.3% percent of 2005 $CO_2$ emissions in Korea. This will result in 3,226 hundred million won of economic efficiency. In conclusion, conservation of natural carbon sinks is necessary even if the amount of potential reduction change is little.

[Retracted]Gas Mask Removal Efficiency of CO, HCl, HCN, and SO2 Gas Produced by Fire ([논문철회]화재용 방독면의 CO, HCl, HCN, SO2 연소생성물 제거효율)

  • Kong, Ha-Sung;Gong, Ye-Som;Kim, Sang-Heon
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.57-60
    • /
    • 2015
  • The removal efficiencies by elastic fire gas mask of toxic gases CO, HCl, HCN, and $SO_2$ produced by a fire have a key role in saving lives. The elastic fire gas mask comprises a visible window, elastic hood, gas purification canister, and air vent. It does not have hair or neck thongs, which makes it easy to use and put on quickly. This research examined the removal efficiency of toxic gases by such a mask. The removal efficiencies for CO with a background concentration of 2505.0 ppm were 99.99 and 99.98% after 3.5 and 8.5 min, respectively. The residual CO concentration was drastically increased after 8.5 min. The removal efficiencies for HCl, HCN, and $SO_2$ with background concentrations of 1003.0, 399.0, and 100.3 ppm, respectively, were 100% after 20 min.

Influence of Soil Mixture on the Growth and Physiological Characteristics of Polystichum lepidocaulon Native Fern (배양토의 조성에 따른 자생 더부살이고사리의 생육과 생리에 미치는 영향)

  • Ju, Jin Hee;Bang, Kwang Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.6
    • /
    • pp.13-20
    • /
    • 2005
  • This study was conducted to examine the growth and physiological characteristics of Polystichum lepidocaulon native fern as affected by soil mixture as an environment modeled on habitate where was sunken-condition. 1. Polystichum lepidocaulon grew well sunken more than non-sunken condition. Under soil mixture of field soil : sand : leaf mold, Plant height, frond width, frond length, stipe length and ornamental value were increased compared with the other soil mixture. 2. Fresh and dry weight of fronds were higher with non-sunken than sunken condition. In sunken condition, fresh and dry weight were better with field soil : sand : leaf mold than the other soil mixture. 3. Number of spore fronds were increased with sunken condition. As sunken condition, sand : leaf mold was better than field soil : sand : leaf mold or leaf mold. 4. Photosynthetic rate, $CO_2$ absorption rate and water efficiency were higher with field soil : sand : leaf mold than that of sand : leaf mold or leaf mold. expect of stomatal conduction and $CO_2$ use efficiency.

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

A Study on the Thermal and Pollution Performances of the Heating Boilers with NG-H2 Mixture Ratio (난방용 보일러에서 NG-H2 혼소율에 따른 열 및 공해 성능의 검토)

  • SEO, JUNSUN;KIM, YOUNG-JIC;PARK, JUNKYU;LEE, CHANG-EON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.573-584
    • /
    • 2021
  • Hydrogen is evaluated as one of the new energy sources that can overcome the limitations and pollution problems of conventional fossil fuels. Although hydrogen is CO2-free, attention is required in NOx emission and flame stability in order to use hydrogen in existing gas fuel system. However, use of electric grids is an unrealistic strategy for decarbonization for residential and commercial heating. Instead, use of H2 that utilizes city gas grid is suggested as a reasonable alternative in terms of compatibility with existing systems, economic feasibility, and accessibility. In this study, the thermal efficiency and NOx performance of the boiler according to the H2 mixture ratio and vapor humidified ratio are reviewed for a humidified NG-H2 boiler that vapor humidity to combustion air. Mixed fuel with H2 (20%) is almost similar to NG in terms of efficiency, flame temperature, and pollution performance. Thus, it is expected to be directly compatible with the existing NG system. If the exhaust temperature of the H2 boiler is lowered to around 60℃ at a humidified ratio of 15-20%, the NOx emission concentration can be suppressed to about 5-10 ppm. The level of efficiency reaches 87% of the rated load efficiency, which is equivalent to the highest grade achievable.