• Title/Summary/Keyword: $CO_2$ sequestration

Search Result 208, Processing Time 0.027 seconds

Combined Effect of 2,4,6-trinitrotoluene(TNT) and Cadmium on Uptake and Phytotransformation of TNT by Abutilion avicennae (TNT(2,4,6-trinitrotoluene)와 카드물의 복합오염이 어저귀의 TNT 흡수 및 생물학적 전환에 미치는 영향)

  • 이인숙;김선영;배범한;장윤영
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.69-74
    • /
    • 2002
  • Most of army depots contaminated with co-contaminants. 2,4,6-trinitrotoluene(TNT) and heavy metais. In phytormediation for the TNT, heavy metals may inhibit mineralization, transformation and sequestration of TNT by the plant. W studied effect of cadmium on TNT degradation and transformation by Abutilion avicenneae in hydroponic cultures. When cultured in 20 ㎎TNT/L and 1.3 ㎎Cd/L. the plant displayed phytotoxicities; reduction of leaf fresh, leaf roll, chlorosis, leaf loss and fresh weight loss. Phytotoxicity was severer in the combined contaminnts than in single contaminant. Because A. avicennae uptake just a little cadmium, 1.3 ㎎Cd/L induded in the TNT medium did not influece significanfly TNT transformation, translocation and distrivution by A. Therefore, the soil solution containing cadmium would not affect TNT degradation by Abutilion avicennae in Amy depots polluted with TNT.

Analysis of Environmental Impacts for the Biochar Production and Soil Application (폐목재를 이용한 바이오차 생산 및 토양적용의 환경평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.461-468
    • /
    • 2014
  • Biochar is a carbon rich solid produced by the pyrolysis of biomass such as energy crops, forestry residues, and wood wastes. Biochar returned to soil is to mitigate climate change and the feedstock of wood wastes reduces fossil fuel consumption as well as disposal costs. This study was practiced to evaluate a biochar system by gasification in terms of global warming regarding the soil application of the produced biochar. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was 1 tonne of wood wastes. The result shows that the biochar system by using wood wastes as feedstock produces 4.048E-01 $kgCO_2-eq$ from the pre-treatment process as chipping and drying, 4.579E-01 $kgCO_2-eq$ from the pyrolysis process, and 9.070E-02 $kgCO_2-eq$ from the spreading to agricultural land, therefore total 9.534E-01 $kgCO_2-eq$ are generated. About 252 kg of $CO_2$ is still stored in the produced biochar in soil after carbon offsetting of the system. Therefore, the net carbon of the system is -251 kg of $CO_2-eq$.

Geochemical Modeling on Water-caprock-gas Interactions within a CO2 Injected in the Yeongil Group, Pohang Basin, Korea (포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • This study is to identify the mineralogical properties of caprock samples from drilling cores of the Pohang basin, which is the research area for the demonstration-scale CO2 storage project in Korea. The interaction of water-rock-gas that can occur due to CO2 injection was identified using geochemical modeling. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of pore water were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 14.0.1 geochemical simulator. Two steps of modeling enabled prediction of immediate changes in the caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Results of minerlaogical analysis showed that the caprock samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, kaolinite and montmollonite. After the injection of carbon dioxide, the porosity of the caprock increased due to the dissolution of calcite, and dawsonite and chalcedony were precipitated as a result of the dissolution of albite and k-feldspar. In the second step after the injection was completed, the precipitation of dawsonite and chalcedony occurred as a result of dissolution of calcite and albite, and the pH was increased due to this reaction. Results of these studies are expected to be used as data to quantitatively evaluate the efficiency of mineral trapping capture in long-term storage of carbon dioxide.

Calibration of δ13C values of CO2 gas with different concentrations in the analysis with Laser Absorption Spectrometry (레이저흡광분석기(Laser Absorption Spectrometry)를 이용한 CO2가스의 탄소안정동위원소비 보정식 산출)

  • Jeong, Taeyang;Woo, Nam C.;Shin, Woo-Jin;Bong, Yeon-Sik;Choi, Seunghyun;Kim, Youn-Tae
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.537-544
    • /
    • 2017
  • Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.

Combined Effect of 2,4,6-trinitrotoluene(TNT) and Cadmium on Uptake and Phytotransformation of TNT by Abutilion avicennae (TNT(2,4,6-trinitrotoluene)와 카드뮴의 복합오염이 어저귀의 TNT흡수 및 생물학적 전환에 미치는 영향)

  • Kim, Sun-Young;Bae, Bum-Han;Chang, Yoon-Young;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.139-144
    • /
    • 2002
  • Most of army depots contaminated with co-contaminants, 2,4,6-trinitrotoluene(TNT) and heavy metals. In phytoremediation for the TNT, heavy metals may inhibit mineralization, transformation and sequestration of TNT by the plant. We studied effect of cadmium on TNT degradation and transformation by Abutilion avicennae in hydroponic cultures. When cultured in 20 mgTNT/L and 1.3 mgCd/L, the plant displayed phytotoxicities; reduction of leaf fresh, leaf roil, chlorosis, leaf loss and fresh weight loss. Phytotoxicity was severer in the combined contaminants than in single contaminant. Because A. avicennae uptake just a little cadmium, 1.3 mgCd/L included in the TNT medium did not influece significantly TNT transformation, translocation and distribution by A. avicennae. Therefore, the soil solution containing cadmium would not affect TNT degradation by Abutilion avicennae in Army depots polluted with TNT.

Study of Producing Natural Gas From Gas Hydrate With Industrial Flue Gas (산업용 배기가스를 이용한 가스 하이드레이트로부터의 천연가스 생산 연구)

  • Seo, Yu-Taek;Kang, Seong-Pil;Lee, Jae-Goo;Cha, Min-Jun;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.188-191
    • /
    • 2008
  • There have been many methods for producing natural gas from gas hydrate reservoirs in permafrost and sea floor sediments. It is well knownthat the depressurization should be a best option for Class 1 gas hydrate deposit, which is composed of tow layers: hydrate bearing layer and an underlying free gas. However many of gas hydrate reservoirs in sea floor sediments are classified as Class 2 that is composed of gas hydrate layer and mobile water, and Class 3 that is a single gas hydrate layer. The most appropriate production methods among the present methods such as thermal stimulation, inhibitor injection, and controlled oxidation are still under development with considering the gas hydrate reservoir characteristics. In East Sea of Korea, it is presumed that the thick fractured shale deposits could be Class 2 or 3, which is similar to the gas hydrate discovered offshore India. Therefore it is needed to evaluate the possible production methods for economic production of natural gas from gas hydrate reservoir. Here we would like to present the production of natural gas from gas hydrate deposit in East Sea with industrial flue gases from steel company, refineries, and other sources. The existing industrial complex in Gyeongbuk province is not far from gas hydrate reservoir of East Sea, thus the carbon dioxide in flue gas could be used to replace methane in gas hydrate. This approach is attractive due to the suggestion of natural gas productionby use of industrial flue gas, which contribute to the reduction of carbon dioxide emission in industrial complex. As a feasibility study, we did the NMR experiments to study the replacement reaction of carbon dioxide with methane in gas hydrate cages. The in-situ NMR measurement suggeststhat 42% of methane in hydrate cages have been replaced by carbon dioxide and nitrogen in preliminary test. Further studies are presented to evaluate the replacement ratio of methane hydrate at corresponding flue gas concentration.

  • PDF

Comparative Assessment of Quantitative Methods determining the Amount of Calcium Carbonate Minerals derived from Biocalcification (생물학적 칼슘화에 의해 생성된 CaCO3 광물의 정량분석 방법 비교 평가)

  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Cheon, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.1-6
    • /
    • 2013
  • This study was performed to develop a method for quantitative analysis obtaining the amount of calcium carbonate minerals formed when Ca salts biomimetically reacted with carbon dioxide. There were two methods compared; 1) volumetric calcimeter method that determining the amount of released carbon dioxide after calcium carbonate minerals were acidified by 4N HCl and 2) Thermogravimetry-Differential Thermal Analysis (TG-DTA) adopting differential decomposition temperature breaking-up the structural link within calcium carbonate minerals. The comparisons were made by batch experiment (i.e., biocalcification process) along with control (i.e., nominal concentration of $CaCO_3$ prepared). For the control, TG-DTA took a minor root mean square deviation (RMSD) of 1.1~5.9 mg, whereas volumetric calcimeter exposed a greater RMSD of 28.3 mg. For the biocalcification, the amount of $CaCO_3$ was more precisely obtained for TG-DTA rather than that of volumetric calcimeter. It was decided that TG-DTA was more successfully used for quantitative analysis to observe the amount of calcium carbonate minerals derived from biocalcification.

Time-lapse crosswell seismic tomography for monitoring injected $CO_2$ in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka의 육상 대수층에 주입된 $CO_2$의 관찰을 위한 시간차 시추공간 탄성파 토모그래피)

  • Saito, Hideki;Nobuoka, Dai;Azuma, Hiroyuki;Xue, Ziqiu;Tanase, Daiji
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Japan's first pilot-scale $CO_2$ sequestration experiment has been conducted in Nagaoka, where 10400 t of $CO_2$ have been injected in an onshore aquifer at a depth of about 1100 m. Among various measurements conducted at the site for monitoring the injected $CO_2$, we conducted time-lapse crosswell seismic tomography between two observation wells to determine the distribution of $CO_2$ in the aquifer by the change of P-wave velocities. This paper reports the results of the crosswell seismic tomography conducted at the site. The crosswell seismic tomography measurements were carried out three times; once before the injection as a baseline survey, and twice during the injection as monitoring surveys. The velocity tomograms resulting from the monitoring surveys were compared to the baseline survey tomogram, and velocity difference tomograms were generated. The velocity difference tomograms showed that velocity had decreased in a part of the aquifer around the injection well, where the injected $CO_2$ was supposed to be distributed. We also found that the area in which velocity had decreased was expanding in the formation up-dip direction, as increasing amounts of $CO_2$ were injected. The maximum velocity reductions observed were 3.0% after 3200 t of $CO_2$ had been injected, and 3.5% after injection of 6200 t of $CO_2$. Although seismic tomography could map the area of velocity decrease due to $CO_2$ injection, we observed some contradictions with the results of time-lapse sonic logging, and with the geological condition of the cap rock. To investigate these contradictions, we conducted numerical experiments simulating the test site. As a result, we found that part of the velocity distribution displayed in the tomograms was affected by artefacts or ghosts caused by the source-receiver geometry for the crosswell tomography in this particular site. The maximum velocity decrease obtained by tomography (3.5%) was much smaller than that observed by sonic logging (more than 20%). The numerical experiment results showed that only 5.5% velocity reduction might be observed, although the model was given a 20% velocity reduction zone. Judging from this result, the actual velocity reduction can be more than 3.5%, the value we obtained from the field data reconstruction. Further studies are needed to obtain more accurate velocity values that are comparable to those obtained by sonic logging.

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Evaluation of Carbon Balance for Carbon Sink/Emission with Different Treatments in Paddy Field (벼논에서 양분관리별 탄소의 흡수·배출에 대한 탄소수지 평가)

  • Kim, Gun-Yeob;Lee, Jong-Sik;Lee, Sun-Il;Jeong, Hyun-Cheol;Choi, Eun-Jung;Na, Un-sung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.715-725
    • /
    • 2017
  • Importance of climate change and its impact on agriculture and environment has increased with the rise in the levels of Green House Gases (GHGs) in the atmosphere. To slow down the speed of climate change, numerous efforts have been applied in industrial sectors to reduce GHGs emission and to enhance carbon storage. In the agricultural sector, several types of research have been performed with emphasis on GHGs emission reduction; however, only a few work has been done in understanding the role of carbon sink on reduction in GHGs emission. In this study, we investigated ecosystem carbon balance and soil carbon storage in an agricultural paddy field. The results obtained were as follows: 1) Evaluation of soil C sequestration in paddy field was average $3.88Mg\;CO_2\;ha^{-1}$ following NPK+rice straw compost treatment, average $3.22Mg\;C\;ha^{-1}$ following NPK+hairy vetch treatment, and average $1.97Mg\;CO_2\;ha^{-1}$ following NPK treatment; and 2) Net ecosystem production (NEP) during the paddy growing season was average $14.01Mg\;CO_2\;ha^{-1}$ following NPK+hairy vetch treatment, average $12.60Mg\;CO_2\;ha^{-1}$ following NPK+rice straw compost treatment, and average $11.31Mg\;CO_2\;ha^{-1}$ following NPK treatment. Therefore, it is proposed that organic matter treatment can lead to an increase in soil organic carbon accumulation and carbon sock of crop ecosystem in fields compared to chemical fertilizers.