• 제목/요약/키워드: $CO_2$ heat pump

검색결과 171건 처리시간 0.061초

하수처리시스템 온실가스 저감활동에 대한 CDM 사업 적용에 관한 연구 (An Application of CDM Project for Greenhouse Gas Reduction Activities in the Wastewater Treatment Systems)

  • 곽인호;황용우;조현정;박광호
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.319-332
    • /
    • 2010
  • In general, wastewater treatment systems consume high-energy consumption depending on operation characteristics of the facilities. Therefore, greenhouse gas(GHG) reduction activities that are application of digestion gas, induction of renewable energy etc. are conducted to reduce energy consumption and to increase energy independence ratio. In this study, GHG reduction in wastewater treatment system identified, searched application of Clean Development mechanism(CDM) approved methodology. If the methodologies apply to GHG reduction activities such as application of digestion gas, heat pump system using the wastewater as heat source, hydropower using the methodology determined CDM applicability, otherwise through several assumptions calculated expectable GHG reduction emissions and determined CDM applicability. As a result, the order of calculated GHG reduction emission showed that collected and energy generation of digestion gas is 66,775 $tCO_2$/yr, gas engine cogeneration system is 8,182 $tCO_2$/yr, heat pump system using the wastewater as a heat source is 72,715 $tCO_2$/yr, and hydropower is 561 $tCO_2$/yr. Consequently, the order of calculated Certified Emission Reductions(CERs) benefit showed that heat pump system using the wastewater, as a heat source is 1,381 million won/yr was estimated as the highest, followed by a collected and energy generation of digestion gas is 1,268 million won/yr.

난방운전 조건하에서 $CO_2$ 열펌프용 내부 열교환기의 열전달 특성에 대한 연구 (Study on Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Heating Operating Condition)

  • 김대훈;이상재;최준영;이재헌;권영철
    • 에너지공학
    • /
    • 제17권2호
    • /
    • pp.116-123
    • /
    • 2008
  • 본 연구에서는 $CO_2$ 열펌프에 사용되는 내부 열교환기를 난방조건에서 운전할 경우, 실험 및 수치적 방법으로 열전달량, 효율, 압력강하 등을 관찰하였다. 4가지 종류의 내부 열교환기를 사용하였다. 수치 해석은 단면분할법과 하디크로스 방법을 이용하여 유량, 길이, 운전조건, 내부 열교환기 종류에 따른 영향을 분석하고 실험을 통해 확인하였다. 유량이 증가함에 따라 열전달량이 약 25% 향상되었다. 마이크로 채널이 동심관에 비해 열전달량이 약 100% 크게 나타났다. 길이가 증가함에 따라 열전달 증가율은 감소하였다. 압력강하는 고압측에 비해 저압측이 크게 나타났으며, 동심관에 비해 마이크로 채널이 약 100% 크게 나타났다. 고온입구조건이 증가할수록, 저온입구조건이 감소할수록 열전달량은 약 3% 증가하였다. $CO_2$의 열전달 계산의 정확성을 위해 $CO_2$의 특성과 관형상을 고려할 수 있는 열전달 상관식의 개발이 필요하다.

Performance Comparison of Various Types of $CO_2$ Compressors for Heat Pump Water Heater Application

  • Kim, Hyun-Jin;Kim, Woo-Young;Ahn, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical simulations for scroll, two-stage twin rotary, and two-cylinder reciprocating compressors have been carried out to understand the effectiveness of each type compressor for heat pump water heater application using $CO_2$ as refrigerant. For suction pressure of 3.5 MPa and discharge pressure of 9 MPa, clearance volume ratio of the reciprocating compressor needs to be about 5% or less to have the volumetric efficiency comparable to that of the scroll compressor with tip clearance of $5\;{\mu}m$. Volumetric efficiency of the scroll compressor is quite sensitive to tip clearance. Adiabatic efficiency of the twin rotary compressor was calculated to be the lowest among the three types, and the most severe drawback of the $CO_2$ scroll compressor was a significant increase in the mechanical loss at the thrust surface supporting the orbiting scroll member. While the scroll compressor showed very smooth torque load variation, peak-to-peak torque variations of the twin rotary and two-cylinder reciprocating compressors were about 50% and 250%, respectively.

헬리컬 코일형 가스냉각기 내 CO2의 냉각 열전달 특성 (Cooling Heat Transfer Characteristics of CO2 in Helical Coil Type Gas Coolers)

  • 손창효;전민주;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.699-706
    • /
    • 2007
  • The cooling heat transfer coefficient and pressure drop of $CO_2$(R-744) in helical coil copper tubes were investigated experimentally The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter. a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45 and 4.55mm inner diameter The refrigerant mass fluxes were varied from 200 to $600 [kg/m^2s]$ and the inlet pressures of 9as cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in helical coil tubes increase with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively food agreement with those Predicted by Ito's correlation developed for single-phase in helical coil tubes. Though a few correlation available with the data. the local heat transfer coefficient of $CO_2$ agrees well with those presented by Pitla et al. among the predictions. However at the region near pseudo-critical temperature. the experiment data indicate higher values than the Pitla et al. correlation.

$CO_2$ 히트펌프 가스쿨러의 설계변수 변화에 따른 성능해석 (Performance Analysis with Change in Design Parameters of $CO_2$ Heat Pump Gas Cooler)

  • 장영수;김민석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.639-644
    • /
    • 2006
  • The outlet temperature of gas cooler has a great effect on the efficiency of carbon dioxide heat pump system. In order to obtain a small approach temperature difference at gas cooler, near-counter flow type heat exchanger has been proposed, and larger heat transfer area is demanded. The optimum design of gas cooler involving the analysis of trade-offs between heat transfer performance and cost is desirable. In this study, the effects of geometric parameters, such as the circuit arrangement, tube diameter, transverse tube spacing, longitudinal tube spacing and the number of tube rows and fin spacing on the performance of heat transfer were investigated using the developed model. This study suggested various simulation results for optimum designs of gas cooler.

  • PDF

내경 4.57과 7.75 mm인 수평관내 이산화탄소의 증발 압력강하 (Evaporation Pressure Drop of Carbon Dioxide in Horizontal Tubes with Inner Diameter of 4.57 mm and 7.75 mm)

  • 손창효
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.30-37
    • /
    • 2008
  • The evaporation pressure drop of $CO_2$ (R-744) in horizontal tubes was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 and 4.57 mm inner diameter. The experiments were conducted at saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The pressure drop measured during the evaporation process of $CO_2$ increases with increased mass flux, and decreases as the saturation temperature increased. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

CO2용 실외열교환기의 오일 영향에 따른 성능변화에 대한 실험적 연구 (An Experimental Study on Oil Effect of CO2 in Heat Pump Outdoor Heat Exchanger)

  • 이진관;장영수;김서영;김용찬
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.243-250
    • /
    • 2011
  • In order to investigate the effects of PAG oil concentration on heat transfer performance and pressure drop during gas cooling process of $CO_2$, the experiments on fin-tube heat exchanger of $CO_2$ heat pump were performed. The experimental apparatus consists of a gas cooler, a heater, a chiller, a mass flow meter, a pump and measurement system. Experiments were conducted in various experimental conditions, which were inlet temperature($110^{\circ}C$), mass flow rates (50, 55, 60, 65, 70 g/s) and PAG oil concentration(0 to 2.6 wt%). Heat transfer rate decreased with the increase of the oil concentration and the decrease of inlet pressure. And pressure drop increased with the increase of the oil concentration and mass flow rate of refrigerant. The COP reduction by deterioration of gas cooler performance with oil concentration was analyzed. When inlet pressure of gas cooler is 100 bar, the COP reduction was estimated by 6% under 1 wt% of oil concentration.

수평원관내 $CO_2$의 증발열전달 (Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube)

  • 경남수;장승일;최선묵;손창효;오후규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

시설원예용 수평형 지열히트펌프 시스템 실증연구 (A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse)

  • 박용정;강신형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

시설원예용 수평형 지열 히트펌프 시스템의 성능분석 (Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse)

  • 박용정;강신형
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF