• Title/Summary/Keyword: $CO_2$ gas injection

Search Result 215, Processing Time 0.029 seconds

Optimum Design on the Mixed Ratio of Injection Gas with CO2/N2 in Enhanced Coalbed Methane Recovery (석탄층 메탄가스 회수증진공법에서 CO2/N2 주입가스의 혼합 비율 최적 설계)

  • Yoo, Hyun-Sang;Kim, Young-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2017
  • Enhanced coalbed methane recovery (ECBM), as injecting $CO_2$ or $N_2$ into the coalbed methane (CBM) reservoir for increasing methane recovery, takes center stage in these days. ECBM makes a better recovery than the conventional production method, it called dewatering process. However the characteristics of injection gas affect to methane recovery, thus analysis on the mixed ratio of injection gas should be required. In this study, CBM reservoir model was built to estimate the methane recovery of ECBM method by different mixed ratio of injection gas. Additionally, to consider the characteristics of injection gas such as carbon captured storage, nitrogen re-injection, etc. economic analysis was performed. The results showed that ECBM cases produced methane almost twice as much as dewatering case and $CO_2$ 10% and $N_2$ 90% case resulted in the highest methane recovery among the mixed gas cases. On the other hand, the results of economic analysis showed that $CO_2$ 20% and $N_2$ 80% case made the highest total production profit. Therefore, both the recovery of methane and economical efficiency should be considered to apply ECBM process.

Combustion Emission Characteristics on the Effect of Secondary Air Injection in Model Gas Turbine Combustor (모형 가스터빈 연소기의 2차공기 주입에 따른 연소배출특성)

  • 김규성;임경달;이도형
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.84-89
    • /
    • 2000
  • The purpose of this study is to investigate the combustion emission characteristics by the effect of secondary air injection and variation of the excess air ratio in combustion field of model gas turbine combustor. For this purpose, mean temperature, CO, $CO_2$, $O_2$ and HC concentrations were measured by changing excess air ratio and secondary air injection. As a result of this study, mean temperature was decreased and CO, HC emission increased by increasing the excess air ratio of secondary air. Therefore, this results showed the secondary air injection effected strongly on the flame structure and combustion emission characteristics.

  • PDF

Monitoring $CO_2$ injection with cross-hole electrical resistivity tomography (시추공간 전기비저항 토모그래피를 이용한 $CO_2$ 주입 모니터링)

  • Christensen, N.B.;Sherlock, D.;Dodds, K.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the resolution capabilities of electrical resistivity tomography (ERT) in the monitoring of $CO_2$ injection are investigated. The pole-pole and bipole-bipole electrode configuration types are used between two uncased boreholes straddling the $CO_2$ plume. Forward responses for an initial pre-injection model and three models for subsequent stages of $CO_2$ injection are calculated for the two different electrode configuration types, noise is added and the theoretical data are inverted with both L1- and L2-norm optimisation. The results show that $CO_2$ volumes over a certain threshold can be detected with confidence. The L1-norm proved superior to the L2-norm in most instances. Normalisation of the inverted models with the pre-injection inverse model gives good images of the regions of changing resistivity, and an integrated measure of the total change in resistivity proves to be a valid measure of the total injected volume.

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix (사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향)

  • Gil, Sun-Kook;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1848-1856
    • /
    • 2013
  • This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).

Experimental Study on Thermal NOx and CO Emission in a Laboratory-Scale Incinerator with Reversed Secondary Air Jet Injection (역방향 2차 공기 주입 방식을 적용한 소각 연소로의 Thermal NOx 및 CO 배출특성에 대한 축소모형실험 연구)

  • Choi, Chonggun;Choi, Woosung;Shin, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.503-510
    • /
    • 2016
  • Incinerators generally emit pollutants such as NOx and CO during the combustion process. In this paper, pollutant emissions and temperature distributions were studied in a simulated incinerator with a reversed (relative to the flue gas flow) secondary air injection system. The experiments were performed by using a lab-scale furnace in order to evaluate the effects of the injection location, direction and flow rate of secondary air jets. The emission of NOx was lower in the case of reversed secondary air injection than in the case of cross injection, due to the recirculation and mixing of the exhaust gas. In the reversed air injection cases, thermal NOx emissions decreased as secondary air ratio increased from 30 to 60 and slightly increased at secondary air ratios higher than 60. In most cases, CO emissions were not detected except for a few reversed secondary air injection cases, in which cases CO concentrations below 2ppm were observed.

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

Research on manufacturing secondary construction products using in-situ carbonation technology (In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구)

  • Hye-Jin Yu;Sung-Kwan Seo;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.

An experimental study on the mixing of evaporating liquid spray in a duct flow (덕트 유동에서 증발을 수반하는 액상 스프레이의 혼합 특성에 대한 실험적 연구)

  • Kim, Y.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.30-38
    • /
    • 2006
  • High temperature furnaces such as power plant and incinerator contribute considerable part of NOx generation and face urgent demand of De-NOx system. Reducing agent is injected into the flue gas flow to activate do-NOx system. Almost SCR system adopt vaporized ammonia injection system. Vaporizer, dilution system and additional space are needed to gasify and inject ammonia. Liquid spray injection system can simplify and economize post-treatment system of flue gas. In this study, mixing caused by gas or liquid injection of reducing agent into flue gas duct was investigated experimentally. Carbonated water was used as tracer and simulated agent and mixing of liquid spray in a duct flow was studied. To achieve that, the angle of attack of static mixer is simulated and $CO_2$ concentration is measured.

  • PDF

SPRAY AND COMBUSTION CHARACTERISTICS OF HYDROCARBON FUEL INJECTED FROM PRESSURE-SWIRL NOZZLES

  • Laryea Gabriel Nii;No Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • This paper presents spray and combustion characteristics of hydrocarbon fuel injected from pressure-swirl nozzles. Three commercial nozzles with orifice diameters of 0.256, 0.308 and 0.333mm and injection pressures ranging from 0.7 to 1.3 MPa were selected f9r the experiments. Spray characteristics such as breakup length. spray angle and drop size (SMD) were analyzed using photo image analyses and Malvern Panicle Size Analyzer. The drop size was measured with and without a blower at the same measuring locations. The flame length and width were measured using photo image analyses. The temperature distribution along the axial distance and the gas emission such as CO, $CO_2\;and\;NO_x$ were studied. The breakup length decreased with an increase in injection pressure for each nozzle but increased with an increase in nozzle orifice diameter. The spray angle increased and SMD decreased with an increase in injection pressure. The flame with an increased linearly with an increase in injection pressure and in nozzle orifice diameter. The flame temperature increased with an increase in injection pressure but decreased along the axial distance. The maximum temperatures occurred closer to the burner exit and flame at axial distance of 242mm from the diffuser tip. The experimental results showed that the level of CO decreased while that of $CO_2\;and\;NO_x$ increased with an increase in injection pressure and nozzle orifice diameter.

  • PDF

Effect of Multiple Injection on the Performance and Emission Characteristics of Lean Burn Gasoline Direct Injection Engines (다단분사가 초희박 GDI 엔진의 성능 및 배기에 미치는 영향)

  • Oh, Jin-Woo;Park, Cheol-Woong;Kim, Hong-Suk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Currently, in order to meet the reinforced emissions regulations for harmful exhaust gas including carbon dioxide ($CO_2$) as a greenhouse gas, technologies for reducing $CO_2$ emission and fuel consumption are being developed. Gasoline direct injection (GDI) systems have the advantage of improved fuel economy and higher power output than port fuel injection gasoline engine systems. The aim of this study is to examine the performance and emission characteristics of a lean burn GDI engine equipped with spray-guided-type combustion system. Stable lean combustion was achieved with a late fuel injection strategy under a constant operating condition. Further improvement in specific fuel consumption is possible with the introduction of multiple fuel injection strategies, which also increases hydrocarbon (HC) and nitrogen oxide ($NO_x$) emissions and decreases carbon monoxide (CO) emission.