• 제목/요약/키워드: $CO_2$ gas cooler

검색결과 57건 처리시간 0.019초

CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하- (Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler -)

  • 오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.30-36
    • /
    • 2010
  • 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하에 대해서 실험적으로 조사하였다. $CO_2$와 냉각수의 유량은 각각 0.06~0.075kg/s이고, 가스냉각기의 냉각압력은 8~10 MPa이다. $CO_2$의 열유량은 냉각수 질량유량, $CO_2$의 질량유량과 냉각압력에 비례하여 증가한다. $CO_2$의 압력강하는 냉각수와 $CO_2$의 질량유량이 감소할수록 감소하지만, $CO_2$의 냉각압력이 증가할수록 감소한다. 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하는 각각 이중관식 가스냉각기보다 상당히 높게 또는 낮게 나타났다. 따라서 다중관식 헬리컬 코일형 가스냉각기에 $CO_2$를 적용하는 경우에는 가스냉각기의 고효율화, 고성능화, 컴팩트화가 가능할 것이다.

내경 1.77 mm의 다중관식 가스냉각기내 CO2 전열 성능에 대한 실험적 연구 (Experimental Study on Heat Transfer Performance of CO2 in a Multi-Tube Type Gas Cooler of Inner Diameter Tube of 1.77 mm)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.439-444
    • /
    • 2008
  • The heat capacity and pressure drop of $CO_2$ and coolant in a multi-tube type gas cooler were investigated experimentally. The main components of the refrigerant loop are a receiver, a $CO_2$ compressor, a mass flow meter, an evaporator and a multi-tube type gas cooler as a test section. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat capacity of $CO_2$ in the test section is increased with the increment in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat capacity of $CO_2$ per unit heat transfer area of gas cooler is greatly high. Therefore, in case of the application of $CO_2$ at the multi-tube type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 - (Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop -)

  • 오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.259-266
    • /
    • 2010
  • 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고 그 결과를 실험값과 비교하였다. $CO_2$와 냉각수의 유량은 각각 0.06~0.075 kg/s이고, 가스냉각기의 냉각압력은 8~10 MPa이다. 초임계 $CO_2$의 냉각시의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고, 이때 냉매측 열전달과 압력강하식은 각각 Gnielinski와 Dittus-Boelter 식을 사용하였다. LMTD법으로 예측한 값과 실험값을 비교한 결과, $CO_2$의 열유량과 압력강하는 상대적으로 좋은 일치를 보였다.

초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석 (Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

$CO_2$ 히트펌프 가스쿨러의 설계변수 변화에 따른 성능해석 (Performance Analysis with Change in Design Parameters of $CO_2$ Heat Pump Gas Cooler)

  • 장영수;김민석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.639-644
    • /
    • 2006
  • The outlet temperature of gas cooler has a great effect on the efficiency of carbon dioxide heat pump system. In order to obtain a small approach temperature difference at gas cooler, near-counter flow type heat exchanger has been proposed, and larger heat transfer area is demanded. The optimum design of gas cooler involving the analysis of trade-offs between heat transfer performance and cost is desirable. In this study, the effects of geometric parameters, such as the circuit arrangement, tube diameter, transverse tube spacing, longitudinal tube spacing and the number of tube rows and fin spacing on the performance of heat transfer were investigated using the developed model. This study suggested various simulation results for optimum designs of gas cooler.

  • PDF

초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하 (The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

수평관내 초임계 영역의 Co2 냉각 열전달 특성 (Heat Transfer Characteristics During Gas Cooling Process of Carbon Dioxide in a Horizontal Tube)

  • 손창효;이동건;오후규;정시영;김영률
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.289-295
    • /
    • 2004
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flowmeter, an evaporator, and a gas cooler(test section). The main components of the water loop consist of a variable-speed pump, an isothermal tank, and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal stainless steel tube of the outer diameter of 9.53mm and of the inner diameter of 7.75mm. The length of the test section is 6m. The refrigerant mass fluxes were 200∼300kg/(m2$.$s) and the inlet pressure of the gas cooler varied from 7.5㎫ to 8.5㎫. The main results were summarized as follows : Pressure drop of CO2 increases with increasing gas cooler pressure. The friction factors of CO2 in a horizontal tube show a relatively good agreement with the correlation by Blasius. The heat transfer coefficient of CO2 in transcritical region increases with decreasing gas cooler pressure and decreasing mass flux of CO2. Most of correlations proposed in a transcritical region showed significant deviations with experimental data except for those predicted by Gnielinski.

헬리컬코일형 $CO_2$ 가스쿨러의 열전달과 압력강하 (Heat Transfer and Pressure Drop of $CO_2$ Gas Cooler in a Helically Coiled Tube)

  • 경남수;유태근;손창효;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.246-247
    • /
    • 2005
  • The paper presents the heat transfer characteristics during cooling process of carbon dioxide($CO_2$) in a helically coiled tube. The main components of the apparatus consist of a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section with the inner diameter 4.55 [mm] is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The main results were summarized as follows : The heat transfer coefficient increases with respect to the decrease of the gas cooler pressure in a supercritical region and the increase of the refrigerant mass flux. The pressure drop decreases in increases of the gas cooler pressure and increases with respect to increases the refrigerant mass flux.

  • PDF

경사진 헬리컬 코일형 가스냉각기의 관형상에 따른 $CO_2$ 냉각 열전달 특성 (Cooling Heat Transfer Characteristics of $CO_2$ on Tube Geometry of Inclined Helical Coil Type Gas Coolers)

  • 손창효;오후규
    • 설비공학논문집
    • /
    • 제19권9호
    • /
    • pp.640-646
    • /
    • 2007
  • The cooling heat transfer coefficient of $CO_2$ (R-744) for tube and coil diameter (CD), inclined angle of tube and coil pitch of inclined helical coil type copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45 and 4.55 mm inner diameter (ID). The refrigerant mass flukes were varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in inclined helical coil tube with 2.45 mm ID are $5{\sim}10.3%$ higher than those of 4.55 mm. The heat transfer coefficients of 41.35 mm CD are $8{\sim}32.4%$ higher than those of 26.75 mm CD. Comparison between $45^{\circ}\;and\;90^{\circ}$ of coil angle, the heat transfer coefficients of $45^{\circ}$ are higher than those of $90^{\circ}$. For coil pitch of gas cooler, the heat transfer coefficients of inclined helical coil gas cooler with coil pitch of 5 mm are similar to those of 10 and 15 mm.

코일직경변화에 따른 헬리컬 코일형 가스냉각기내 초임계 이산화탄소의 냉각열전달 특성 (Heat Transfer Characteristics of Supercritical $CO_2$ in Helical Coil Gas Coolers on the Change of Coil Diameters)

  • 손창효
    • 한국가스학회지
    • /
    • 제11권3호
    • /
    • pp.44-48
    • /
    • 2007
  • 본 연구는 코일직경변화에 따른 헬리컬 코일 가스냉각기내 초임계 $CO_2$의 냉각 열전달 특성에 대해 실험적으로 조사하였다. 냉매 순환루프의 주요구성품은 수액기, 변속펌프, 질량유량계, 예열기, 헬리컬 코일형 가스냉각기(시험부)로 구성된다. 시험부는 내경 4.55 mm의 평활 동관과 26.75 mm와 41.35 mm인 코일직경으로 이루어져 있다. 냉매질량유속은 $200kg/m^2s$에서 $800kg/m^2s$가지 변화시켰고, 가스냉각기의 입구압력 범위는 7.5 MPa에서 10.0 MPa까지이다. 코일직경이 26.75 mm인 가스냉각기내 이산화탄소의 냉각열전달 계수가 코일직경이 41.35 mm인 열전달 계수보다 높은 것으로 나타났다. 또한 초임계 상태에서 제안한 종래의 냉각 열전달 상관식과 비교한 결과, 대부분의 상관식이 과소예측되었고, 그 중에서도 이산화탄소의 냉각 열전달 계수는 Pilta 등이 제안한 상관식과 좋은 일치를 보였다. 하지만, 유사임계 온도 영역부근에서는 실험데이터가 더 큰 것으로 나타났다.

  • PDF