• Title/Summary/Keyword: $CO_2$ foam

Search Result 125, Processing Time 0.018 seconds

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Development of Accident Response Information Sheets for Hydrogen Fluoride (불화수소에 대한 사고대응 정보시트 개발)

  • Yoon, Young Sam;Park, Yeon Shin;Kim, Ki Joon;Cho, Mun Sik;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • We analyzed the demand of competent authorities requiring adequate technical information for initial investigation of chemical accidents. Reflecting technical reports on chemical accident response by environmental agencies in the U.S. and Canada, we presented information on environmental diffusion and toxic effects available for the first chemical accident response. Hydrogen fluoride may have the risk potential to corrode metals and cause serious burns and eye damages. In case of inhalation or intake, it could have severe health effects. The substance itself is inflammable, but once heated, it decomposes producing corrosive and toxic fume. In case of contact with water, it can produce toxic, corrosive, flammable or explosive gases and its solution, a strong acid, may react fiercely with a base. In case of hydrogen fluoride leak, the preventive measures are to decrease steam generation in exposed sites, prevent the transfer of vapor cloud and promptly respond using inflammable substances including calcium carbonate, sodium bicarbonate, ground limestone, dried soil, dry sand, vermiculite, fly ash and powder cement. The method for fire fighting is to suppress fire with manless hose stanchions or monitor nozzles by wearing the whole body protective clothing equipped with over-pressure self-contained breathing apparatus from distance. In case of transport accident accompanied with fire, evacuation distance is 1,600m radius. In cae of fire, fire suppression needs to be performed using dry chemicals, CO2, water spray, water fog, and alcohol-resistance foam, etc. The major symptoms by exposure route are dyspnoea, bronchitis, chemical pneumonia and pulmonary edema for respiration, skin laceration, dermatitis, burn, frostbite and erythema for eyes, and nausea, diarrhea, stomachache, and tissue destruction for digestive organs. In atmosphere, its persistency is low, and its bioaccumulation in aquatic organism is also low.

Recovery of N and P Resources from Animal Wastewater by Struvite Crystallization (Struvite 결정화에 의한 축산폐수로 부터 질소.인 자원의 재생)

  • Jo, W.S.;Yoon, S.J.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.875-884
    • /
    • 2003
  • Operational parameters for struvite crystallization, as a process to recover nitrogen and phosphorus resources from animal wastewater, were studied in this research. Crystallization distinctive of NH$_4$-N and PO$_4$$^{3-}$ in accordance to chemical sources, influent pH, aeration and stirring was examined using 2L of working volume of struvite reactor. Also, to find an effective treatment process combining with electrolysis method, removal characteristics of NH$_4$-N and PO$_4$$^{3-}$ in 6 different processes was tested. As chemical sources for the derivation of struvite formation, MgSO$_4$ and MgCl$_2$ were superior to CaCO$_3$ and CaCl$_2$. From experiment which was conducted to know the effects of aeration and stirring on struvite formation, it was revealed that aeration stimulated the crystallization reaction by inducing faster pH increase. While 90% of P removal was achieved within 1 hour under aeration, 14 hours was consumed under stirring condition. Struvite formation under aeration was affected by influent pH. No crystallization was observed at pH 5 level, but active crystallization reaction was induced over pH 6.0. 95% of P removal by struvite formation at pH 6, 7 and 9 was achieved within 3h, 2h and 10 min., respectively. However, over pH 10, operational problem due to excessive foam formation occurred, and blunting of crystallization reaction was observed at pH 11. When consider the pH range of animal wastewater, pH 7 to 9, efficient struvite formation could be achieved by simple aeration, without any chemical usage for pH adjustment. Among tested processes, the treatment process which electrolyzing the supernatant from struvite reactor, providing air to both reactors, showed best pollutant removal efficiencies. In this combined process, the removal efficiencies of NH$_4$-N and PO$_4$$^{3-}$ was 86% and 98%, respectively, and 92.4% of color removal was obtained.

Control of Bulking and Foaming Caused by Microthrix parvicella (Microthrix parvicella에 의한 슬러지 벌킹과 거품문제 해결)

  • Kang, Min-Gi;Kim, Young-Chul;Bang, Seong-Ho;Lee, Jin-Woo;Ha, Jun-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.376-383
    • /
    • 2006
  • This study was undertaken to control sludge bulking and foaming problems at the biological nutrient removal processes. A sewage treatment plant(STP) had a severe sludge settling problem usually over 90% in 30 min settled sludge volume and 300 mL/g in SVI and also thick and heavy brown foam in the secondary clarifiers. Identification study shows that causative filament was Microthrix parvicella which has not been previously reported in Korea. According to the inspection of processes and other related parameters, excessive growth of this particular filament was associated with high SRT caused by lack of proper capacity in sludge treatment line. After providing an extension of the sludge treatment capability, the plant can decrease SRT by wasting more sludge from the processes and also decreasing SS concentration in recycled stream. Subsequently we were able to control growth of M. parvicella. The SVI value was reduced to half of those observed during the severe bulking, but also sludge blanket and its concentration in the clarifier became compact and dense. However, decrease in population of M. parvicella caused increase of total phosphorus concentration in the effluent.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.