• Title/Summary/Keyword: $CO_2$ Removal Efficiency

Search Result 439, Processing Time 0.029 seconds

Simulation of the flue gas treatment processes of an industrial-waste incinerator using Aspen plus (Aspen plus를 이용한 산업폐기물 소각로의 배가스 처리 공정 모사)

  • Lee, Ju-Ho;Jung, Moon-Hun;Kwon, Young-Hyun;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3246-3252
    • /
    • 2009
  • The interest on the recovery of thermal energy using the waste has been rising to solve the problems of continuous increase of waste generation and the depletion of the fossil fuel recently. The incineration has been used most popularly as a treatment process of the waste for the energy recovery. However, it is expected that incineration and design cost will increase in the treatment of air contaminant emitted from incinerator. This research has simulated the actual incinerator and the flue gas treatment system using the Aspen plus which is the software to simulate the chemical process. The incineration process is composed of the 1st and 2nd combustor to burn the waste, SNCR process to reduce the $NO_x$ using the urea, and the steam generation process to save the energy during incineration. The $Ca(OH)_2$ slurry was used as an acid gas (HCl, $SO_2$) treatment materials and the removal efficiency for the products from the neutralization of acid gas in SDA and combustion ash was simulated at the bag filter. The simulation result has been corresponded with the treatment efficiency of emitted gas from the actual industrial waste incinerator and it is presumed to be used to forecast the efficiencies of flue gas treatment system in the future.

Estimation of Characteristics Treatment for Food Waste and Valuable as Solid Refuse Fuel (SRF) using Bio-drying Process (Bio-drying 공법을 이용한 음식물류 폐기물 분해 특성 평가 및 고형연료로서의 가치 평가)

  • Jeong, Cheoljin;Park, Seyong;Oh, Dooyoung;Jang, Eun-Suk;Song, Hyoungwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • In this study, water and organic treatment efficiency and operating characteristics (temperature, salinity effect) were evaluated when food waste with high water content was treated by Bio-dying method. In addition, the optimum conditions for producing pellets for evaluating the decomposition products as SRF(Solid Refuse Fuel) after Bio-drying and evaluating the use value of SRF as a solid fuel were analyzed. As a result, the temperature, $CO_2$ concentration, organic matter removal rate and weight reduction rate according to the daily dose were about 86% and 68% at the input of 2.4 kg/day. The optimal food waste input was estimated to be 2.4 kg/day. As a result of the pellet molding and produce, Pellets can be produced within 10~25% of raw material water content. It was judged that the water content of 25%, which showed the best quality results in terms of external shape maintenance and strength. The high calorific value of SRF of decomposition products after Bio-drying was more than 3,500 kcal/kg.

The Biological Treatment of Soil Washing Water Contaminated with Heavy Metal (중금속오염 토양 세척수의 생물학적 처리)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1222-1227
    • /
    • 2006
  • In this study, nine strains were isolated from heavy metal-contaminated soil in a mine. The high efficiency bacteria, JH1, to be able removal cadmium and copper, was selected by the screen test. JH1 was identified as Ralstonia eutropha by 16S rDNA analysis, fatty acid analysis, and its morphological and biochemical characteristics. After the cadmium-contaminated soil was washed with citric acid solution(pH 6, 10 mM), Ralstonia eutropha JH1 was inoculated in the soil washing water. In order to determine the optimal cell concentration for inoculation, cell concentrations were considered in 0.5, 1.0, 2.0, 4.0 g/L, respectively. The removal efficiencies for cadmium in each cell concentration of Ralstonia eutropha JH1 were 49.9, 84.4, 89.7% and 89.9% of 110 mg/L(Cd), after 5 days culture in soil washing water. When Ralstonia eutropha JH1 was inoculated in soil washing water containing each cadmium(110 mg/L) and copper(100 mg/L), each of them was removed completely during 6 days culture. The completely removing time for cadmium and copper in each low concentration, 10, 30 and 60 mg/L were 12, 18 and 48 hrs, respectively.

A Close Examination of Unstability and a Quality Improvement using Anhydrous $Na_2CO_3$ in Waste Plastic's Thermal Pyrolysis Oil (폐플라스틱 열분해 재생유의 불안정한 요인 규명과 무수탄산나트륨으로 품질 향상)

  • Seo, Young-Hwa;Ko, Kwang-Youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1371-1380
    • /
    • 2007
  • Study on the instability of waste plastic's thermal pyrolysis oil was carried out for the purpose of improving its quality. The reaction of pyrolysis oil with ozone changed double bonds into aldehydes and ketone, estimated that HDPE pyrolysis oil contained $\sim45$ wt% 1-alkene type olefins, and PP pyrolysis oil did $\sim73$ wt% olefins, which consisted of $\sim47$ wt% secondary and $\sim20$ wt% primary alkenes. The dark brown color and odor of pyrolysis oil were improved by eliminating double bonds, indicated that they were directly related to unsaturated hydrocarbons. Container test showed that metal can affected oil quality worse than the brown glass bottle. Antioxidant added into pyrolysis oil was consumed up to 90% within $2\sim3$ days and the wt. composition of unsaturated hydrocarbons in pyrolysis oil was not changed within 50 days, inferring that instability of pyrolysis oil due to unsaturated bonds can be stabilized by antioxidants. Adsorption test on silica gel, activated carbon and alumina to remove precipitates in oil produced a good result, but not enough to remove moisture. However, cheap anhydrous sodium carbonate showed the best removal efficiency of moisture as well as precipitates in oil. Therefore the pyrolysis oil quality improvement was accomplished by applying anhydrous $Na_2CO_3$ into the production plant.

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF

Comparisons of Physical and Chemical Methods for Dealing with Biologically Pre-Treated Livestock Wastewater as a Post-Treatment (축산폐수 생물학적 처리수의 후처리를 위한 물리·화학적 단위 공정 비교)

  • Choi, Yong-Su;Hong, Seok-Won;Kwon, Gi-han;Jung, Il-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.110-119
    • /
    • 2004
  • The combination of biological and physical/chemical technologies is a promising technique to reduce highly concentrated pollutants in livestock wastewater. It is suggested to treat livestock wastewater efficiently as follows: firstly, biodegradable organic matters, nitrogen and some of phosphorus should be removed by a biological treatment process and then residual non-biodegradable organic matters, color and phosphorus be eliminated by physicochemical technologies. In this study, therefore, the integrations of chemical coagulation, activated carbon adsorption, Fenton oxidation and ozonation were evaluated to provide appropriate post-treatment processes for biologically pre-treated livestock wastewater. After chemical coagulation followed by ozonation or Fenton oxidation process, the quality of treated wastewater could meet the discharge limit in Korea. However, a yellowish brown color still remained in the treated wastewater after a single method such as coagulation and Fenton oxidation was applied. The ozonation was found to be the most effective technology for the decolorization. Neither simple biological nor physicochemical treatment provides adequate decolorization and sufficient depletion of organics in livestock wastewater so far. Consequently, the integration of Fenton oxidation and ozonation with a biological treatment process is recommended to treat livestock wastewater in terms of removal efficiency.

Preparation of Iron Nanoparticles Impregnated Hydrochar from Lignocellulosic Waste using One-pot Synthetic Method and Its Characteristics (One-pot 합성 방법을 이용한 나노 철입자가 담지된 폐목재 기반 하이드로차의 제조 및 특성 평가)

  • Choi, Yu-Lim;Kim, Dong-Su;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, iron nanoparticles impregnated hydrochar (FeNPs@HC) was synthesized using lignocellulosic waste and simple one-pot synthetic method. During hydrothermal carbonization (HTC) process, the mixture of lignocellulosic waste and ferric nitrate (0.1~0.5 M) as a precursor of iron nanoparticles was added and heated to 220℃ for 3 h in a teflon sealed autoclave, followed by calcination at 600℃ in N2 atmosphere for 1 h. For the characterization of the as-prepared materials, X-ray diffraction (XRD), cation exchange capacity (CEC), fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), Energy Dispersive X-ray Spectroscopy (EDS) were used. The change of Fe(III) concentration in the feedstock influenced characteristics of produced FeNPs@HC and removal efficiency towards As(V) and Pb(II). According to the Langmuir isotherm test, maximum As(V) and Pb(II) adsorption capacity of Fe0.25NPs@HC were found to be 11.81 and 116.28 mg/g respectively. The results of this study suggest that FeNPs@HC can be potentially used as an adsorbent or soil amendment for remediation of groundwater or soil contaminated with arsenic and cation heavy metals.

Pretreatment of Vegetable Oil Using Ion-exchange Resin and Biodiesel Production (이온교환수지를 이용한 식물유지의 전처리 및 바이오디젤 생산)

  • Hong, Yeon-Ki;Huh, Yun-Suk;Hong, Won-Hi;Oh, Sung-Woo
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.104-108
    • /
    • 2007
  • Biodiesel is a fatty acid alkyl ester produced by chemical reaction of a vegetable oil or animal fat and an alcohol. It is getting attention as a clean alternative energy that can replace gas oils. In this study, strong acidic ion exchange resin was introduced in the pretreatment process of the used cooking oil and rapeseed oil to enhance the conversion of the oil to the biodiesel by removing FFA(free fatty acid). More than 90% FFA was removed. Dry resins showed higher FFA removal efficiency than wet resins. Using transesterification the conversion of triglyceride into fatty acid methyl ester was raised up to 98%. These results can be applicable to the pretreatment of biodiesel feedstocks having high acidic value.

  • PDF

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Remediation Process by using Lime and Calcium Carbonate for Heavy Metal Contaminated Groundwater Originated from Landfills (소석회$(Ca(OH)_2)$와 탄산칼슘$(CaCO_3)$을 이용한 매립장 주변 중금속 오염 지하수 정화)

  • Song Nain;Lee Yesun;Lee Minhee
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.273-284
    • /
    • 2005
  • Coagulation and precipitation process by using lime$(Ca(OH)_2)$ and calcium carbonate $(CaCO_3)$ were applied to remove heavy metals from groundwater in laboratory scale. From results of batch tests, by the addition of $0.3\;wt.\%$ lime, more than $90\%$ of As and Mn were removed and $70-80\%$ of Cd and Zn were removed by using $0.5\;wt.\%$ of lime. Removal efficiency of Pb almost reached $100\%$ with only $0.1\;wt.\%$ of calcium carbonate and more than $93\%$ of Cd were removed by the addition of $0.1\;wt.\%$of calcium carbonate. Pilot scale column experiments were performed to remove heavy metals in the separation process of precipitated Hoc to supernatant after the coagulation/ precipitation. For lime as a coagulant, more than $99\%$of As were removed from artificial groundwater and removal efficiencies of Cd, Mn, and Zn were over $80\%$. By using calcium carbonate, more than $95\%$ of Cd and Pb were removed in column experiment. Fe and Mn contaminated groundwater taken from a real landfill site, Ulsan was used for the column experiment and more than $99\%$ of Fe and Mn were removed by the addition of $1\;wt.\%$ lime in column experiment, suggesting that the coagulation/precipitation process by using lime and calcium carbonate have a great possibility to remove heavy metals from contaminated groundwater.