• Title/Summary/Keyword: $CO_2$ Removal

Search Result 1,172, Processing Time 0.027 seconds

Simultaneous removal of $SO_X$ and $NO_X$ by wet scrubber at small and medium craft (중소형 선박의 $SO_X/NO_X$ 동시제거를 위한 습식세정시스템)

  • Cha, Yu-Joung;Lee, Ju-Yeol;Ha, Tae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.159-166
    • /
    • 2014
  • In recent years, researchers have put a considerable effort to decrease the emission of harmful gaseous pollutants to the atmosphere. In order to remove simultaneously $SO_2$ and $NO_X$ from the flue gas of small and medium-sized ship, we designed minimal wet scrubber inside a compact multistage modular system. In this study we proceed experiment of elemental technology at each stage of the scrubber. The each stage is oxidation of NO which is the main component of $NO_X$, and removal of $SO_2$, respectively. $NaClO_2$ was used to oxidize NO gas, and NaOH was used to remove $SO_2$ gas. The maximum NO conversion efficiency and the $SO_2$ removal efficiency are both indicate 100%.

An Analysis of the Ageing Effect on the Removal of Cesium and Cobalt from Radioactive Soil by the Electrokinetic Method

  • Kim Gye-Nam;Oh Won-Zin;Won Hui-Zun;Jung Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.304-315
    • /
    • 2004
  • The ageing effects of radionuclides in radioactive soil on remediation using the electrokinetic method were analyzed. Comparative experiments were conducted for the reactive soil around a TRIGA research? reactor contaminated with $^{137}Cs\;and\;^{60}Co$ for 15 years and the non-reactive soil that was intentionally contaminated with $Cs^+\;and\;Co^{2+}$ for 3 days. It was observed that because of an aging effect on $^{137}Cs$, the efficiency of removing it decreased. $H_{2}SO_4$ used as an additive to increase the removal efficiency showed a higher removal capability than other chemicals for both $^{137}Cs\;and\;^{60}Co$. The efficiency of removing radionuclides from the radioactive soil in the column was proportional to the capability of the added chemical to extract radionuclides. It took 10 days to achieve a $54\%$ removal of $^{137}Cs$ and a $97\%$ removal of $^{60}Co$ from the soil. The volume of the soil wastewater discharged from the soil column by the electrokinetic method was $20\%$ below that for soil washing.

$CO_2$ removal system by dry sorbent for passenger train (건식 흡착제를 이용한 차량용 이산화탄소 저감장치 개발)

  • Cho, Yong-Dae;Lee, Ju-Yeol;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1735-1739
    • /
    • 2008
  • Malfunction or inappropriate management of ventilation system in public transportation may cause unpleasant atmosphere or health problems to the old or feeble passengers. In this work, gaseous carbon dioxide removal system is developed and tested under the various serviced passenger cabins. Finally an optimum operating conditions for the $CO_2$ removal system will presented.

  • PDF

Development of Adsorbent for Radioactive Carbon Dioxide (고효율 방사성이산화탄소 흡착제 개발)

  • 지준화;강덕원;이재의;한재욱
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.158-161
    • /
    • 2003
  • To develop an effective adsorbent for radio active Carbon Dioxide, $^14CO_2$, which is discharged to nearby atmosphere from nuclear power plants of CANDU type, we made some preliminary adsorbents and tested their abilities of $CO_2$ removal. The chemical agents used was LiOH and we supported or impregnated it on the surface or the internal volume of activated Carbon(GW-H). The physical and chemical properties of various adsorbents were measured using methods such as XRD, BET. SEM images were taken to investigate the change of surface morphology of the adsorbents. Finally, amount of $CO_2$ adsorption of them were verified under specific conditions. We found that mechanical mixing of LiOH and activated Carbon showed the maximum $CO_2$ removal ability, while surface activation of activated Carbon by Nitric Acid-treatment enhanced its $CO_2$ removal efficiency to some degree.

  • PDF

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

A Study on the Removal of SOx and NOx Using Catalytic Ceramic Filters (촉매담지 세라믹 필터를 이용한 황산화물과 질소산화물의 제거에 관한 연구)

  • 홍민선;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.455-464
    • /
    • 1998
  • Removal teals of Soxmox were performed using low density ceramic filters doped with various catalysts. Disc type (50 mmO.Dx10 mmt) low density ceramic filters were doped with three different catalysts such as Cu to remove SOx and NOx, and Mn and Co to remove NOx. The air permeabilities and specific surface areas were 40~50cc/min.cm2.cmH2O and 4.1~8.88 m2/g, respectively. Also, the peak pore sizes of catalyst support were 3~5nm. Tests were focused to search optimum operating temperatures for different catalysts. It was found that as the CuO content increases, SOx removal efficiency was increased. NOx removal efficiencies for Mn, Cu and Co, were 85% at 30$0^{\circ}C$, 90% at 40$0^{\circ}C$ and 90% at 45$0^{\circ}C$, respectively.

  • PDF

Characteristics of manganese removal by ozonation: Effect of existing co-ion and optimum dosage (오존을 이용한 용존성 망간 제거 특성: 공존이온의 영향 및 최적주입량)

  • Kwak, Yeonwoo;Lee, Seulki;Lee, Yongsoo;Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • This study is focused on manganese (Mn(II)) removal by ozonation in surface water. Instant ozone demand for the water was 0.5 mg/L in the study. When 0.5 mg/L of Mn(II) is existed in water, the optimum ozone concentration was 1.25 mg/L with reaction time 10 minutes to meet the drinking water regulation. The ozone concentration to meet the drinking water regulation was much higher than the stoichiometric concentration. The reaction of soluble manganese removal was so fast that the reaction time does not affect the removal dramatically. When Mn(II) is existed with Fe, the removal of Mn(II) was not affected by Fe ion. However As(V) is existed as co-ion the removal of Mn(II) was decreased by 10%. Adding ozone to surface water has limited effect to remove dissolved organic matter. When ozone is used as oxidant to remove Mn(II) in the water, the existing co-ion should be evaluated to determine optimum concentration.

Removal of Heavy Metal Ions from Aqueous Solution by Leaves (식물 잎을 이용한 중금속 이온의 제거에 관한 연구)

  • Kim, Jong-Geu;Lee, Jang-Hoon;Lee, Su-Yong;Na, Kyung-Won;Ra, Kyu-Hwan;Choi, Han-Young
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2009
  • In this research, I carried out the adsorption and removal test of Pb, Ni, Co and Cu ions using organic substances spread out any where in the nature which can be obtained easily from our neighbor-such as Paulownia coreana, Pinus densiflora, Juniperus chinesis, Quercus dentata, Magnolia kobus, Platanus occidentalis, Gingko biloba, Diospyros kaki leaves. As the result of the research to find the best optional condition for the adsorption and removal, shows that the adsorption and removal ratio of Pb ion by a Paulownia coreana raw leaves is 99% at $70^{\circ}C$, those of Ni ion and Co ion by Magnolia kobus formalin treatment leaves are 79% at $70^{\circ}C$, 97% at $40^{\circ}C$ respectively. And that of Cu ion by Platanus occidentalis treatment leaves is 97% at $50^{\circ}C$ in mixed solution. As the result of comparing the removal ratio by raw leaves and formalin treatment leaves, the removal ratio of treatment is 30~90% more effective than raw leaves in most cases. And I concluded Pb > Cu > Co > Ni ion in multiple solution and Co > Ni > Cu >Pb ion in single solution after testing adsorption and removal ratio of mixed solution separately as time goes by. In general, the reactions were completed within first 5 minutes. The test result of measuring the hydrolysable tannin content of each leaf shows that an overcup Quercus dentata is 11.36%, a Diospyros kaki is 10.81% and the rest of them are 2.49~4.12% in raw leaves cases. In treatment leaves cases, an overcup Quercus dentata is 3.23% and the others are less than 1%.

Phosphorus Removal from Wastewater by CaCO3 Media (탄산칼슘 담체를 이용한 폐수내의 인 제거)

  • Kim, Moon Ki;Park, Jae Hong;Lee, Kwang Hyun;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.515-521
    • /
    • 2009
  • In this study, the applicability of $CaCO_3$ as a seed material for crystallization reaction was tested. $CaCO_3$ was ground to lesser than 425 mesh and was made to media mixed with binder. Batch experiment was to investigate the ${PO_4}^{3-}-P$ removal efficiency of different parameters such as $CaCO_3$ dosage and binder ratio, size, type and mass of media. In addition, the effect of phosphorus removal from wastewater was tested using a lab-scaled crystallization reactor. At the results of the batch test, phosphorus removals were improved with increasing $CaCO_3$ dosage and media mass but were decreased with increasing media size. Moreover, phosphorus removals were influenced by specific surface area but media type. The average T-P and ${PO_4}^{3-}-P$ removal efficiency in a lab-scaled crystallization reactor with $CaCO_3$ media for wastewater were shown to be 60.2% and 60.3% for 18 days of operation time.

Effects of CO2 partial pressure on the characteristics of organic matter degradation in anaerobic digestion (혐기성소화의 물질분해 특성에 미치는 CO2 분압의 영향)

  • Kim, Young Chur;Eom, Tae kyu;Lee, Mu Kang;Cha, Gi Cheol;Noike, Tatsuya
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.111-118
    • /
    • 1996
  • Effects of $CO_2$ partial pressure($pCO_2$) on the characteristics of methane production rate and organic matter degradation in anaerobic digestion were investigated by using anaerobic chemostat type reactors at $35{\pm}1^{\circ}C$, at the HRT of 7days. The $pCO_2$ of the reactors was controlled in the range from 0.1 to 0.8 atm. Since the $pCO_2$ in an uncontrolled condition was about 0.4atm, $N_2$ was added for the reactors controlled of $pCO_2$ of between 0.1 and 0.4atm. At $pCO_2$ of 0.5 atm, the methane production rate was approximately 20% more that in an uncontrolled condition of $pCO_2$. Based on the carbon mass balance, it was concluded that methane production was related to the increment of removal organic carbon and consumption of $CO_2$. At $pCO_2$ of 0.5atm, the methane production by the increment of removal substrates increased 13.6%, on the orther hand, hand, the methane production by the conversion of $CO_2$ to methane increased 6.4%.

  • PDF