• Title/Summary/Keyword: $CO_2$ Emissions reduction effect

Search Result 103, Processing Time 0.022 seconds

Function of Home Energy Savings and Carbon Emission Reduction by Urban Vegetation- Case of Chuncheon- (도시식생의 주택에너지절약 및 탄소배출저감 기능 -춘천시를 대상으로-)

  • 조현길;서옥하;한갑수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.104-117
    • /
    • 1998
  • Rising concern about climate change has evoked interest in the potential for urban vegetation to help reduce the level of atmospheric CO\sub 2\, a major heat-trapping gas. This study quantified the functio of home energy savings and carbon emission reduction by shading, evapotranspiration and windspeed reduction of urban vegetatioin in Chuncheon. Tree and shrub cover averaged approximately 13% in residential land. The effects of shading, evapotranspiration and windspeed reduction annually saved heating energy by 2.2% and cooling energy by 8.8%. The heating and cooling energy savings reduced carbon emissions by 3.0% annually. These avoided emissions equaled the amount of carbon emitted annually from fossil fuel consumption by a population of about 1,230. Carbon emission reduction per residential building was 55kg for detached buildings and 872 kg for multifamily buildings. Urban vegetation annually decreased heating and cooling energy cost by ₩1.1 billions, which were equivalent to annual savings of ₩10,000 savings and carbon emission reduction due to tree plantings in the wrong locations, while windspeed reduction had a great effect. Plantings fo large trees close to the west and east wall of buildings, full tree plantings on the north, and avoidance of shade-tree plantings or selection of solar-friendlytrees on the south were recommended to improve the function of building energy savings and carbon emission reduction by urban vegetation.

  • PDF

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.

Carbon Emission Analysis Considering Demand Response Effect in TOU Program (TOU 프로그램의 DR 효과를 고려한 탄소 배출 분석)

  • Kim, Young-Hyun;Kwag, Hyung-Geun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1091-1096
    • /
    • 2011
  • Currently, the concern about the environment is the issue all over the world, and in particular, carbon emissions of the power plants will not be able to disregard from the respect of generation cost. This paper proposes DR (demand response) as a method of reducing carbon emissions and therefore, carbon emissions cost. There are a number of studies considering DR, and in this paper, the effect of DR is focused on the side of carbon emission reduction effect considering Time-Of-Use (TOU) program, which is one of the most important economic methods in DSM. Demand-price elasticity matrix is used in this paper to model and analyze DR effect. Carbon emissions is calculated by using the carbon emission coefficient provided by IPCC (Intergovernmental Panel on Climate Change), and generator's input-output characteristic coefficients are also used to estimate carbon emission cost as well as the amount of carbon emissions. Case study is conducted on the RBTS IEEE with six buses. For the TOU program, it is assumed that parameters of time period partition consist of three time periods (peak, flat, off-peak time period).

A Study on the Market Analysis & Demand Forecasting of $CO_2$ Reduction and Sequestration Technologies (온실가스 저감 및 처리기술의 시장 분석 및 수요예측 연구)

  • Lee Deok-Ki;Choi Sang-Jin;Park Soo-Uk
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2005.05a
    • /
    • pp.217-233
    • /
    • 2005
  • As the Kyoto Protocol will come into effect starting February 2005, 55 member countries of the Conference of Parties of the Framework Convention on Climate Change (FCCC) will be under obligation to reduce the emissions of Carbon Dioxide $(CO_2)$ by 5.2 Percent from the 1990 levels before the year 2012. Hence the development of technology to prepare for this has been accelerated in Korea. The effect of technology varies with market size of technology, and it is necessary to control technology development period, according to the size and trend of technology market. Moreover it is essential that market analysis be finished before technology development, because market on the $(CO_2)$ Reduction and Sequestration Technology expands internationally. For that reason, it is needed to analyze domestic market and to consider technology development strategy according to analysis results. In this paper, we analyzed the domestic industry and forecasted the market size, both related to the Reduction and Sequestration Technology on $(CO_2)$ emission, which is the major component of global Green House Gas(GHG).

  • PDF

An Analysis of Installation of Railway Construction Project Management System on Carbon Reduction (철도건설 사업관리시스템 도입에 따른 탄소저감 효과 분석)

  • Park, Jun-Tae;Ahn, Tae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.382-388
    • /
    • 2017
  • In response to the global warming crisis, the Kyoto protocol was established by major developed countries in 1997. The Paris Agreement, which imposes a carbon reduction obligation for both developed countries and developing countries, was signed in 2015. Regulations and efforts to reduce greenhouse gas emissions accordingly have been implemented. In this study, we analyzed the reduction of carbon emissions computerizing of the traditional project management system for efficient railway construction at Korea Rail Network Authority. We suggest a model that measures two major effects of carbon reduction, stemming from transportation and from a decrease of paper use. In this paper, we calculate the amount of carbon reduction and the economic effect of carbon reduction with application of the construction project management system at Korea Rail Network Authority. The model and methodology in this study are expected to be helpful to measure the carbon reduction performance for similar e-transformation.

Reduction of NO Emission by Two-Stage Combustion (2단 연소에 의한 NO 배출 저감에 관한 연구)

  • 유현석;최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.

Engine Cycle Simulation for the Effects of EGR on Combustion and Emissions in a DI Diesel Engine (직분식 디젤엔진에서 EGR이 연소특성 및 배출가스에 미치는 영향에 대한 시뮬레이션 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.51-59
    • /
    • 2002
  • In this study, cycle simulation was performed to investigate the effect of EGR on combustion characteristics and emissions including NO and soot using a two-zone model in a DI diesel engine. The NO formation was well predicted for different EGR rate and temperature using a two-zone model. The oxygen in the inlet charge was replaced by CO$_2$ and H$_2$O with EGR. The reduction in the inlet charge oxygen resulted in very large reduction in NO level at the same inlet charge temperature. The effect of EGR was to reduce the burned gas temperature. When EGR was increased from 0% to 15%, the peak flame temperature was decreased by 50$\^{C}$ and it caused about 57% NO reduction. EGR caused increase of the overall inlet charge temperature which offset some of benefit of lower flame temperature resulting from O$_2$ displacement. Cooling the EGR was confirmed to provide additional benefits by lowering NO emission. It also reduced soot emission.

The role of nuclear energy in the correction of environmental pollution: Evidence from Pakistan

  • Mahmood, Nasir;Danish, Danish;Wang, Zhaohua;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1327-1333
    • /
    • 2020
  • The global warming phenomenon emerges from the issue of climate change, which attracts the attention of intellectuals towards clean energy sources from dirty energy sources. Among clean sources, nuclear energy is getting immense attention among policymakers. However, the role of nuclear energy in pollution emissions reduction has remained inconclusive and demand for further investigation. Therefore, the current study contributes to extend knowledge by investigating the nexus between nuclear energy, economic growth, and CO2 emissions in a developing country context such as Pakistan for the period between 1973 and 2017. The auto-regressive distributive lag model summarizes the nuclear energy has negative effect on environmental pollution as it releases carbon emission in the environment. Moreover, vector error correction Granger causality provides evidence for bidirectional causality between nuclear energy and carbon emissions. These interesting findings provide new insight, and policy guidelines provided based on these results.

Estimation of GHGs Emission to Improvement of Facility Efficiency in the Food wastewater Treatment Process (식품폐수처리시설의 설비효율 개선에 따른 온실가스 배출량 평가)

  • An, Sang-Hyung;Song, Jang-Heon;Kim, San;Chung, Jin-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.378-384
    • /
    • 2019
  • In the food wastewater treatment facilities, the water quality improvement effect and the greenhouse gas emission amount followed by the change in electricity usage through a change of the aeration tank ventilation system were evaluated. also, the amount of greenhouse gas emission followed by the change in electricity usage through the change of the sludge dewatering, storage, transporting method was also evaluated. The total GHG emission from food wastewater treatment facility improvement were divided into direct emissions from the treatment processes and indirect ones from electricity usage. The water quality improvement effect of wastewater treatment plant was found to be 63.3% for BOD removal rate, 42.0% for COD removal rate, 71.0% for SS removal rate and 39.6% for T-N removal rate. and according to the results of calculating output by applying both direct emissions of greenhouse gas (Scope 1) and the indirect emission (Scope 2) of greenhouse gas followed by changes in power consumption. It was estimated that there was a total of 276.0tCO2eq./yr(7.5%) greenhouse gas reduction effect from 3,668.8tCO2eq./yr before improvement to 3,392.8tCO2eq./yr after improvement. In this result is not due to the effects of water quality improvement of emission source, but because the reduction in electricity use has reduced the amount of greenhouse gas emissions.

A Study on the Effect of Initial Strength of Cement Paste Containing Fly Ash or Blast Furnace Slag on CO2 Curing Period (플라이 애쉬 및 고로슬래그 혼입 시멘트 페이스트의 CO2 양생 기간에 따른 초기강도의 영향에 대한 연구)

  • Han, Jae-Do;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.83-84
    • /
    • 2018
  • As the concentration of greenhouse gases in the atmosphere increases, the reduction of CO2 is gaining worldwide attention. In the construction industry, cement replacement materials such as fly ash and blast furnace slag were investigated to reduce CO2 emissions in cement production process. Precast concrete is used in the field after manufacturing in the factory in the form of pipes and bricks because of shortening construction period and cutting construction cost. According to the results of previous research, it is known that early CO2 curing in concrete using OPC or fly ash has an initial strength enhancement effect and can be used for precast concrete production. Therefore, the purpose of this study is to evaluate the strength improvement effect by confirming the initial strength improvement effect when blast furnace slag is mixed.

  • PDF