• Title/Summary/Keyword: $CO_2$ 폼

Search Result 42, Processing Time 0.016 seconds

Initial Analysis of the Underground Air Among Jeju Lava Forest(Sumgol) and its Healing Effect on the Human Body (제주 현무암 '숲' 지하 공기(숨골: Sumgol)의 분석과 인체에 미치는 치유 효과)

  • Sin, SBangsik;Kim, Hyek Nyeon;Lee, Deok Hee;Kim, Tae Seung;Kim, Yong Hwan;Kang, Chang Hee;Song, Kyu Jin;Lee, Hyung H.
    • Journal of Naturopathy
    • /
    • v.11 no.1
    • /
    • pp.18-30
    • /
    • 2022
  • Background: It was to develop an air purification system (APS) using an underground air purification layer to verify the effect of basalt forest's underground air (sumgol) on a volcanic Jeju. Finally, it is necessary to analyze these purified air components and their usefulness to the human body in an air experience center. Purpose: It was to collect basalt forest air, analyze its composition, and explore its effect on the human body. Methods: We APS devices installed at four points in the Papaville area of Jeju. The air discharged from the APS was collected and analyzed the recycling components. An installed experience room filled with negative ions is about 5,000 ions/m3. After allowing the participants to stay for 60 to 120 minutes, we investigated the state of blood vessels. Results: In the analysis of the underground air, the O2 concentration was 21.18%, which was higher than the average oxygen concentration of 20.94% in the atmosphere. However, Formaldehyde was not detected, and the CO2 was 419 ppm, which was lower than that of indoor air. The PM2.5 concentration was less than 24 ㎍/m3 and detected anions over 5.000 /m3. The experiencer's vascular states improved, and the increase in pulse rate and stress relief were high. Conclusions: The valuable ingredients identified by analyzing the air were precious for natural healing. The experience results showed that it effectively improved the pulse rate, blood vessels, and stress. These conditions may be highly beneficial as a new area for expanding the basalt lava forest in the Jeju area into the natural healing and wellness industry.

Development of Filtering Sets Composed of Lignocellulosic Fiber-based 3-layers Fiberboard and Traditional Korean Paper for the Purification of Indoor and Outdoor Air Pollutants (리그노셀룰로오스 섬유-기반 3층 섬유판과 한지로 구성된 실내외 대기 오염물질 정화용 필터세트의 개발)

  • Young-kyu Lee;Yeong Seo Choi;Myoung cheol Moon;Jae min So;Ohkyung Kwon;Wonsil Choi;Joon weon Choi;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.87-98
    • /
    • 2024
  • This study was conducted to investigate the efficiency of the filtering sets composed of fiberboards, which were fabricated with lignocellulosic fiber and cork oak bark-based activated carbon (COA), as well as traditional Korean paper handmade from mulberry trees (KP) for the filtration of PM, TVOC and HCHO. Three-layers fiberboards (WRF) were fabricated with wood fiber in its surface layers and recycled fiber/COA in its core layer using a protein-based adhesive with the resin content of 8%. Filtering sets were composed of three WRF and one sheet of KP. Concentrations of PM, TVOC and HCHO generated with the combustion of a incense in a sealed laboratory hood were reduced efficiently with the operation of air-purifier installed the filtering sets. Except for the WRF fabricated with 4%/4% resin contents, other WRF were prepared with 5%/3% and 6%/2% resin contents in surface/core layers, and then the WRF were used with KP for the fabrication of filtering sets. Filtration efficiency of the filtering sets was improved as the core-layer resin content applied in the fabrication of WRF decreased. In addition, filtration efficiency of the WRF-based filtering set fabricated with KP of 25 g/m2 basis weight was higher than that with KP of 45 g/m2 basis weight. Filtering sets composed of three-layers fiberboards (RWF) that recycled fiber and wood fiber/COA were used in its surface and core layers, respectively, and KP-25g showed higher filtration efficiency than those of WRF-based filtering sets. Air-inhalation equipment installed the RWF-based, WRF-based filtering sets and without filtering set were operated in small indoor and large outdoor spaces. Efficiency for filtering PM and TVOC of the RWF-based filtering sets was higher than that of other filtering sets. It is concluded that fiberboard-based filtering sets composed of RWF and KP-25g can be used as a filter for reducing the concentrations of PM and TVOC existed in indoor and outdoor spaces.