• Title/Summary/Keyword: $CO_2$ 잠재감축량

Search Result 37, Processing Time 0.028 seconds

A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University (실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 -)

  • Kim, Seok-Young;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Jung, Hye-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • As GHG target management is introduced in Korea, designated establishment takes responsibilities to reduce more than 30% of expected GHG emission until 2020. Although decreasing GHG has been requested to universities which consume great amount of energy, there are difficulties to apply high cost countermeasures. Therefore, this research suggest a low cost, easily-applicable energy saving method, and derive potential GHG reduction amount in the case of SNU, Kwan-ak campus. First of all, 11 rooms of different use were chosen as the samples, and energy consumption in each room was measured. Standard models for each room were built through researching on the electric devices in each room. Moreover, energy consumption was computed for each devices through analyzing the pattern of electricity consumption. 32 GHG reduction technology and action program were chosen, and they were applied to the standard models for individual rooms. Through multiplying energy reduction rate of each program to energy consumption of each electric device, maximum energy reduction of each electric device is derived. Through that, Maximum GHG reduction for individual rooms and each month and the total GHG reduction capacity of Kwan-ak campus were computed. It was found out that approximately $5,311tCO_2$-eq can be reduced, when reduction technology and action program suggested by this research are applied. It appeared 24.48% of requested reduction amount to SNU can be reduced, till 2016.

Assessment of GHG Emission Reduction Potential in Extension of Nuclear and Renewable Energy Electricity Generation (원자력과 신재생에너지 발전설비 확대에 따른 온실가스 저감 잠재량에 관한 연구)

  • Jun, Soo-Young;Park, Sang-Won;Song, Ho-Jun;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.191-202
    • /
    • 2009
  • South Korea, ranks 10th largest emitter of carbon dioxide in the world, will probably be under the obligation to reduce GHG emission from 2013. It is very important to reduce the electrical energy consumption since 30% of GHG emission in South Korea is made during electricity generation. In this study, based on "the 1st national energy master plan", the GHG emission reduction potential and the feasibility of the scenario in the electricity generation have been analyzed using LEAP(Long-range Energy Alternative Planning system). The scenario of the mater plan contains the 41% expansion of nuclear power plant facilities and the 11% diffusion of renewable energy until 2030. In result, total $CO_2$ emission reduction rate is 28.8% in 2030. Also $CO_2$ emission of unit electricity generation of bituminous coal power plant is $0.85kgCO_2/kWh$ and its LNG power plant is $0.51kgCO_2/kWh$ in BAU scenario. Therefore when existing facilities is exchanged for nuclear or renewable energy power plant, substitute of bituminous power plant is more effective than LNG power.

Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology (NCCU(Non-Capture CO2 Utilization) 기술의 CO2 감축 잠재량 산정)

  • Lee, Ji Hyun;Lee, Dong Woog;Gyu, Jang Se;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Choi, Jong-shin;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.590-596
    • /
    • 2015
  • Estimating potential of $CO_2$ emission reduction of non-capture $CO_2$ utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of $CO_2$ contained in the flue gas. For the estimating the $CO_2$ emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle $CO_2$ of 100 tons per day was performed, Also for the estimation of the indirect $CO_2$ reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall $CO_2$ emission was estimated as 48,862 ton per year based on the energy consumption for the production of $NaHCO_3$ ($7.4GJ/tNaHCO_3$). While for the NCCU technology, the direct $CO_2$ reduction through the $CO_2$ carbonation was estimated as 36,500 ton per year and the indirect $CO_2$ reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of $CO_2$ contained in the flue was energy efficient and could be one of the promising technology for the low $CO_2$ emission technology.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

GHG Mitigation Scenario Analysis in Building Sector using Energy System Model (에너지시스템 분석 모형을 통한 국내 건물부문 온실가스 감축시나리오 분석)

  • Yun, Seong Gwon;Jeong, Young Sun;Cho, Cheol Hung;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.153-163
    • /
    • 2014
  • This study analyzed directions of the energy product efficiency improvement and Carbon Tax for the domestic building sector. In order to analyze GHG reduction potential and total cost, the cost optimization model MESSAGE was used. In the case of the "efficiency improvement scenario," the cumulative potential GHG reduction amount - with respect to the "Reference scenario" - from 2010 to 2030 is forecast to be $104MtCO_2eq$, with a total projected cost of 2.706 trillion KRW. In the "carbon tax scenario," a reduction effect of $74MtCO_2eq$ in cumulative potential GHG reduction occurred, with a total projected cost of 2.776 trillion KRW. The range of per-ton GHG reduction cost for each scenario was seen to be approximately $-475{\sim}272won/tCO_2eq$, and the "efficiency improvement scenario" showed as the highest in the order of priority, in terms of the GHG reduction policy direction. Regarding policies to reduce GHG emissions in the building sector, the energy efficiency improvement is deemed to deployed first in the future.

The Analysis of the Potential Effects of Energy Conversion Policy Considering Environment (환경을 고려한 에너지 전환정책의 잠재적 효과분석)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.325-345
    • /
    • 2021
  • In this paper, we empirically evaluate the potential performance of energy conversion policy and analyze its effects on power generation sector. We first examine the degree of substitutability between energy inputs by measuring the price elasticities of energy demands and then estimate the changes in CO2 generation when the proportions of nuclear power plants and renewable power generation are increased. The shadow prices of nuclear power and renewable energy are calculated to compare the potential costs of power generation between the two energy sources. We analyze the impacts of the expansion of nuclear power plants and renewable power generation on power supply price. Nuclear and renewable energy were measured to be complementary to each other. The expansion of nuclear power plants has been more effective in reducing CO2 emissions than increasing renewable power generation. In most years over 2002 to 2016, the impact of nuclear power expansion on the power supply price was generally higher than that of renewable power generation, with relatively large range of fluctuations.

Effect of by New and Renewable Energy Utilization on $CO_2$ Reduction in Rural-type Green Village (농촌형 녹색마을 내 신재생에너지 활용에 따른 $CO_2$ 저감 효과)

  • Kim, J.G.;Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, H.T.;Lee, S.K.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.44-52
    • /
    • 2012
  • As an alternative strategy in the era of high level petroleum cost, the study focused to suggest the way on the revitalization of renewable energy through the impact on introduction effect of renewable energy in green village. Total feasible solar energy production is 6.73 GWh/yr along with the biomass energy producing electric power energy is 134.06 GWh/yr, the two category's total electric power energy is 233.19 GWh/yr, which is possible to achieve the selfsufficiency of energy by 33% for total energy consumption of 705.80 GWh/yr in the region. The calculated feasibility on the carbon dioxide reduction, carbon dioxide reduction level is 1,891 ton_$CO_2$ by agricultural byproducts, 43,635 ton_$CO_2$ by livestock waste, 395 ton_$CO_2$ by municipal waste, 50,324 ton_$CO_2$ by forest byproducts, the total biomass shows 96,245 ton_$CO_2$, while the carbon dioxide reduction of solar light energy is 2,251 ton_$CO_2$, 1,383.3 ton_$CO_2$ by solar heat energy, the total solar energy shows 3,634 ton_$CO_2$. So total carbon dioxide reduction effect shows 99,879 ton_$CO_2$.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System

  • Ryu, Jong-Hee;Lee, Jong-Sik;Kim, Kye-Hoon;Kim, Gun-Yeob;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.502-509
    • /
    • 2013
  • To estimate greenhouse gas (GHG) emission, we established inventory of conventional rice cultivation from farmers in Gunsan and Iksan, Jeonbuk province in 2011~2012. This study was to calculate carbon footprint and to analyse the major factor of GHGs. We carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we tried to suggest agricultural methods to reduce GHGs that farmers of this case study can apply. Carbon footprint of rice production unit of 1 kg was 2.21 kg $CO_2.-eq.kg^{-1}$. Although amount of $CO_2$ emissions is largest among GHGs, methane had the highest contribution of carbon footprint on rice production system after methane was converted to carbon dioxide equivalent ($CO_2$-eq.) multiplied by the global warming potential (GWP). Source of $CO_2$ in the cultivation of rice farming is incomplete combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ emitted during rice cultivation and major factor of $CH_4$ emission is flooded paddy field in anaerobic condition. Most of the $N_2O$ emitted from rice cultivation process and major sources of $N_2O$ emission is application of fertilizer such as compound fertilizer, urea, orgainc fertilizer, etc. As a result of sensitivity analysis due to the variation in energy consumption, diesel had the highest sensitivity among the energies inputs. If diesel consumption is reduced by 10%, it could be estimated that $CO_2$ potential reduction is about 2.5%. When application rate of compound fertilizer reduces by 10%, the potential reduction is calculated to be approximately 1% for $CO_2$ and approximately 1.8% for $N_2O$. When drainage duration is decreased until 10 days, methane emissions is reduced by approximately 4.5%. That is to say drainage days, tillage, and reducing diesel consumption were the main sources having the largest effect of GHG reduction due to changing amount of inputs. Accordingly, proposed methods to decrease GHG emissions were no-tillage, midsummer drainage, etc.

An Analysis on the Construction of Energy Exchange Network to Recover Waste Heat Energy in Pohang Steel Industrial Complex (포항철강산업단지 내부 폐열 회수를 위한 에너지 교환망 구축 방안 분석)

  • Lee, Gwang-Goo;Jung, In-Gyung;Chun, Hee-Dong
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.406-411
    • /
    • 2011
  • A detailed database of waste heat is built to propose energy exchange networks to recover waste energy in Pohang Steel Industrial Complex. A visualized technique is used to figure out the status of waste heat energy and to suggest potential energy exchange networks. Several energy networks are proposed in terms of temperature level, the amount of available energy, distance, and construction cost. A simple economical assessment is applied to the energy exchange networks which have higher economic potential. Their average payback period is estimated to be 2.8 years. The total amount of energy saving by constructing the proposed energy exchange networks is 4,778 TOE per year. It corresponds to 11,160 ton $CO_2$ reduction with the assumption that the recycled waste energy replaces the use of LNG in energy-demanding companies.

Estimation of CO2 Mitigation Potentials using Food Miles of Domestic and Imported Food - About Beef and Wine - (푸드 마일리지를 이용한 식품의 이산화탄소 감축 잠재량 평가 - 쇠고기와 포도주를 대상으로 -)

  • Seong, Mi-Ae;Kim, Dai-Gon;Lee, Jae-Bum;Ryu, Ji-Yeon;Hong, You-Deog
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.15-32
    • /
    • 2011
  • Due to greenhouse gas increased by human activities, abnormal climate changes are continuously occurring everywhere in the world and internationally people make efforts to reduce the emission of greenhouse gas. Our country also is making endeavors to realize low carbon society on the foundation of the green growth and for this low carbon consumption pattern settlement through green life is necessary. Therefore for the nationals the offering of the information on greenhouse gas emission that is reduced through the change to low carbon life is required. In this study the objects are beef and wine whose weight of import is high among the beverages and foods consumed in the country and we calculated the food mileage and emission of carbon dioxide of the domestic and foreign product beef and wine and estimated the potential amount that can be reduced when replacing the imported products with domestic products. As the year 2007 being standard if we replace 10% of imported beef with domestic products it is possible to reduce 14,000 tons of carbon dioxide per year and on one day out of a year if we replace imported beef with domestic beef the reduction of 384 tons of carbon dioxide is appeared to be possible. In the same standard year if we replace 10% of imported wine with domestic product we can reduce 1,396 tons and on one day out of a year if we replace imported wine with domestic wine reduction of 38 tons of carbon per year appeared to be possible. Through active promotion and expansion of variety of domestic foods and beverages in the real life of the nationals the consumption pattern of natural low carbon life should be achieved and offering of more systematized greenhouse gas emission DB is thought to be necessary.