• Title/Summary/Keyword: $CO_2$ 양생

Search Result 92, Processing Time 0.021 seconds

A Basic Study on the Development of Optimum Carbonation Curing Techniques for Concrete Using Supercritical CO2 (초임계 CO2를 활용한 콘크리트의 최적 탄산화양생기법 개발에 관한 기초적 연구)

  • Hong, Sung-Jun;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.91-92
    • /
    • 2022
  • This study is a basic study on carbonation curing technology of concrete using supercritical CO2, and carbonation curing was carried out by exposing concrete to supercritical CO2 for a certain period of time. In the case of conventional carbonation curing, long-term curing was performed for several weeks by controlling the concentration of CO2, but by using supercritical CO2, more rapid carbonation curing was carried out using constant temperature and pressure conditions to improve durability through surface modification of concrete. This experiment was conducted with the goal of deriving the optimal carbonation curing conditions by measuring the carbonation depth by exposing concrete for a certain period of time to conditions above the supercritical level. As a result, it was confirmed that the carbonation depth increased as the curing time increased, and the curing time could be shortened compared to the carbonation curing according to the existing CO2 concentration.

  • PDF

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement (이산화탄소 반응경화 시멘트 제조 및 경화특성 연구)

  • Ki-Yeon Moon;Byung-Ryeol Kim;Seung-Han Lee;Moon-Kwan Choi;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.52-59
    • /
    • 2022
  • Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.

Hydration Characteristics according to First Curing Condition in Solid Hydrated by Hydro-Thermal Synthesis Reaction (수열합성경화체의 1차 양생조건에 따른 수화특성)

  • Kim, Jin-Man;Jung, Eun-Hye;Park, Sun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.543-548
    • /
    • 2008
  • Solid hydrated by hydro-thermal synthesis reaction is cured two times, the first curing is the steam curing at atmospheric pressure and the second one is a high-pressure steam curing, that is autoclaving. Steam curing is to acquire the proper strength for the resistance of treatment in the first curing process, it was not evaluated properly so far. Because of ignorance about curing, some engineers even think that the dry curing is better than the steam curing. The relation between compressive strength of solid hydrated by hydrothermal synthesis reaction and curing condition are presented in this paper. In order to investigate the effect of curing on the strength properties of specimen, the hydration behavior of solid hydrated by hydro-thermal synthesis reaction has been studied over curing condition using XRD, DT-TGA and porosimeter, SEM analysis technique. The results show that the specimens which are cured with blended method of dry and steam curing appear to have better strength properties than that of dry curing and steam curing. Also, there are significant difference of hydration behavior among curing condition in the solid hydrated by hydro-thermal synthesis reaction.

A Study on the Effect of Initial Strength of Cement Paste Containing Fly Ash or Blast Furnace Slag on CO2 Curing Period (플라이 애쉬 및 고로슬래그 혼입 시멘트 페이스트의 CO2 양생 기간에 따른 초기강도의 영향에 대한 연구)

  • Han, Jae-Do;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.83-84
    • /
    • 2018
  • As the concentration of greenhouse gases in the atmosphere increases, the reduction of CO2 is gaining worldwide attention. In the construction industry, cement replacement materials such as fly ash and blast furnace slag were investigated to reduce CO2 emissions in cement production process. Precast concrete is used in the field after manufacturing in the factory in the form of pipes and bricks because of shortening construction period and cutting construction cost. According to the results of previous research, it is known that early CO2 curing in concrete using OPC or fly ash has an initial strength enhancement effect and can be used for precast concrete production. Therefore, the purpose of this study is to evaluate the strength improvement effect by confirming the initial strength improvement effect when blast furnace slag is mixed.

  • PDF

Physicochemical Properties of Cement Paste Containing Mg(OH)2 Cured by CO2 curing Method (CO2 양생을 이용한 Mg(OH)2 혼입 시멘트 페이스트의 물리화학적 특성)

  • Chen, Zheng-Xin;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.203-210
    • /
    • 2018
  • Corrosion of the rebar is one of the main factors affecting the durability of reinforced concrete in the world which lead to the failure of the reinforced concrete structures. In this research, a new method of fixing $CO_2$ is practiced to improve the carbonation resistance of the concrete. Brucite($Mg(OH)_2$), a kind of common $CO_2$ fixation materials, was added into ordinary Portland cement paste. Samples containing 0%, 5%, 10%, and 15% $Mg(OH)_2$ were exposed to an accelerated carbonation curing regime with 20% concentration of $CO_2$, 60% relative humidity, and a temperature of $20^{\circ}C$ until tested at 3d, 7d, 14d and 28d. After 28d of $CO_2$ accelerated curing, in the paste containing $Mg(OH)_2$, magnesian calcite was detected by SEM-EDX. Meanwhile, the paste containing $Mg(OH)_2$ exhibit the better pore distribution than ordinary Portland cement paste and the compressive strength of the cement paste containing $Mg(OH)_2$ were more than 50Mpa.

Experimental Study on Accelerated Carbonation Characteristics of OPC Paste for CSC-Based Low Carbon Precast Concrete Products (CSC 기반 저탄소 콘크리트 2차제품 제조를 위한 OPC 페이스트의 촉진탄산화 특성에 관한 실험적 연구)

  • Yoon, Jun-Tae;Kim, Young-Jin;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • This study investigated the impact of accelerated carbonation on Ordinary Portland Cement(OPC) paste that had undergone steam curing at 500℃·hr. Two carbonation environments were examined: atmospheric carbonation(1atm, 20% CO2) and pressurized carbonation(5atm, 99% CO2). Chemical analysis using X-ray diffraction(XRD) and Fourier-Transform Infrared spectroscopy(FT-IR) were conducted, along with physical characterization via scanning electron microscopy(SEM) and compressive strength testing. Results indicated that atmospheric carbonation with 20% CO2 concentration significantly densified the internal microstructure of the OPC paste, leading to enhanced compressive strength. Conversely, pressurized carbonation at 5atm with 99% CO2 concentration resulted in rapid densification of the surface structure, which hindered CO2 diffusion into the sample. This limited the extent of carbonation and prevented the improvement of physical properties.

Strength Property of Ternary System Non-Cement Matrix according to the Curing Method (3성분계 무시멘트 경화체의 양생방법에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.389-396
    • /
    • 2014
  • This study was conducted as the basic research for the replacement of Blast Furnace Slag, Red Mud, Silica Fume, etc., with cement as a solution to the problems arising from the global warming caused by the generation of $CO_2$, and conducted the experimental review to examine the feasibility of matrix having properties identical to those of cement by using the Blast Furnace slag, Red mud, Silica fume, and alkali-activator. For this, by using the the inorganic binder, such as Blast Furnace Slag, Red Mud, Silica Fume, etc., and NaOH, $Na_2SiO_3$ and others as the cement substitute material, the strength characteristic according to the mixture time variation was performed in the tentative experiment. Based on the preceding experiment, this study performed the experiment to analyze the strength properties of hardener through the curing by air-dry temperature, curing by temperature in water, coating curing, and Korean paper curing. For the water curing at $80^{\circ}C$, the compressive strength and flexural strength were found to be the most excellent at the age of the 28th day, and furthermore, it was found that the non-cement hardener could be made, which is considered to affect the production of eco-friendly concrete.

Compressive Strength Properties of Steam-cured High Volume GGBFS Cement Concrete (증기양생한 고로슬래그 다량치환 시멘트 콘크리트의 압축강도 특성)

  • Hong, Seong-Hyun;Kim, Hyung-Suk;Choi, Seul-Woo;Lee, Kwang-Myong;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, lots of researches on concrete with high volume mineral admixture such as ground granulated blast furnace slag (GGBFS) have been carried out to reduce $CO_2$. It is known that the precast concrete has an advantage of high strength at early age due to steam curing, even if concrete has high replacement level of mineral admixture. However it demands the investigation of compressive strength properties according to steam curing regimens. In this study, concretes with water-binder ratio of 32, 35% and water content of 135, 150, $165kg/m^3$ were produced to investigate compressive strength properties of high volume (60% by mass) GGBFS cement concrete according to steam curing regimens. Then steam curing was implemented with the maximum temperature of 50, $60^{\circ}C$ and steaming time of 5, 6, 7 hours. From the test results, it was found that steam curing was effective to raise early strength of high volume GGBFS cement concrete, but 28 day compressive strengths of steam cured specimens were lower than those of water cured specimens. Thus, a further study would be needed for the optimum steam curing regimens to satisfy target demolded strength and specified strength for the application of high volume GGBFS cement concrete to precast concrete members.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.