• Title/Summary/Keyword: $CO_2$ 메탄화 반응

Search Result 98, Processing Time 0.026 seconds

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

The Methane Reforming by $CO_2$ Using Pelletized Co-Ru-Zr-Si Catalyst (성형 Co-Ru-Zr-Si 촉매를 이용한 이산화탄소에 의한 메탄 리포밍)

  • Nam, Jeong-Kwang;Lee, Ji-Hye;Song, Sang-Hoon;Ahn, Hong-Chan;Chang, Tae-Sun;Suh, Jeong-Kwon;Kim, Seong-Bo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-182
    • /
    • 2012
  • The methane dry reforming has received the considerable attention in recent years, mainly as an attractive route to produce synthesis gas (CO, $H_2$) from green-house gases ($CH_4$, $CO_2$) for resources. However, this process has not been commercialized due to the high temperature and catalyst deactivation. In this study, Co-Ru-Zr catalysts supported on $SiO_2$ were studied for the characterization of methane dry reforming reaction and the preliminary data for process development were achieved. The crystal structure of catalysts was measured by XRD, the surface area and pore size were analyzed by BET, and the element composition of catalyst were analyzed by EDS. Conversions of methane and carbon dioxide were analyzed by GC. In addition, reaction rate constants were obtained from the reaction kinetic study and the optimum catalyst size that does not affect mass transfer from reactants was also determined. The selected pellet-type catalyst maintained activation for 720 h at $850^{\circ}C$.

Kinetic Analysis of Oxidative Coupling of Methane over Na+/MgO Catalyst (Na+/MgO 촉매상에서 메탄의 Oxidative Coupling 반응의 속도론적 해석)

  • Seo, Ho-Joon;Sunwoo, Chang-Shin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-587
    • /
    • 1994
  • The oxidative coupling of methane was studied kinetically using $Na^+(50wt%)/MgO$ catalyst at 710, 730, 750, 770 and $790^{\circ}C$ in a fixed bed flow reactor at the atmospheric pressure under differential conversion conditions. Through curve fitting, it was found that the Langmuir-Hinshelwood type mechanism was fitted to this reaction rather than Rideal-Redox type or Eley-Rideal type mechanism. Therefore, it was proposed that the $O_2{^-}$ or $O_2{^{2-}}$ species on the surface was related to the production of $CH_3{\cdot}$. The estimated activation energy of $CH_3{\cdot}$ production was about 39.3kcal/mol. Moreover, as the result of curve fitting, the stoichiometric coefficient of $O_2$ for the production of $CH_3{\cdot}$ to produce $CO_x$was approximately 1.5. Accordingly, it could be concluded that the $CH_3O_2{\cdot}*$ was prouduced through the partial oxidation of $CH_3{\cdot}$ with the surface oxygen.

  • PDF

Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h (1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응)

  • Koo, Jeong-Boon;Sin, Jang-Sik;Yang, Jeong-Min;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.802-807
    • /
    • 2012
  • The autothermal reforming of methane to syngas has been carried out in a reactor charged with both a Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO metallic monolith catalyst and an electrically-heated convertor (EHC). The standalone type reactor has a start-up time of less than 2 min with the reactant gas of $700^{\circ}C$ fed to the autothermal reactor. The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. The reactor temperature increased as the reaction shifted from endothermic to exothermic reaction with decreasing $H_2O/CH_4$ ratio. Also the amount of $CO_2$ in the products increases with increasing $H_2O/CH_4$ ratio due to water gas shift reaction. The 97% of $CH_4$ conversion was obtained and the reactor temperature was maintained $600^{\circ}C$ at the condition of $GHSV=10,000\;h^{-1}$ and feed ratio ($H_2O/CH_4=0.6$ and $O_2/CH_4=0.5$). In this condition, the maximum flow rate of the syngas generated from the reactor charged with 170 cc of the metallic monolith catalyst is $0.94\;Nm^3/h$.

Characteristics of methane reforming with carbon dioxide using transition metal catalyts (전이금속 촉매를 이용한 이산화탄소와 메탄의 개질 특성)

  • Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.644-650
    • /
    • 2021
  • This study characterized the reforming of methane with carbon dioxide, which is a major cause of global warming. The methane decomposition reaction with carbon dioxide was carried out using transition metal catalysts. The reactivity of tin was lower than that of a transition metal, such as nickel and iron. Most of the decomposition reaction occurred in the solid state. The melting point of tin is 505.03 K. Tin reacts in a liquid phase at the reaction temperature and has the advantage of separating carbon produced by the decomposition of methane from the liquid tin catalyst. Therefore, deactivation due to the deposition of carbon in the liquid tin can be prevented. Methane decomposition with carbon dioxide produced carbon monoxide and hydrogen. Ni was used to promote the catalyst performance and enhance the activity of the catalyst and lifetime. In this study, catalysts were synthesized using the excess wet impregnation method. The effect of the reaction temperature, space velocity was measured to calculate the activity of catalysts, such as the activation energy and regeneration of catalysts. The carbon-deposited tin catalyst regeneration temperature was 1023 K. The reactivity was improved using a nickel co-catalyst and a water supply.

Hydrothermal Pressure Effect over Preparation of MoS2: Catalyst Characterization and Direct Methanation (수열 압력 제조 조건이 MoS2 촉매 특성과 직접 메탄화 반응에 미치는 영향)

  • PARK, JEONGHWAN;KIM, SEONGSOO;KIM, JINGUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.170-180
    • /
    • 2018
  • After $MoS_2$ catalyst was prepared at 1, 30, and 70 atm, the hydrothermal pressure effect over preparation of $MoS_2$ was investigated in terms of catalyst characterization and direct methanation. Multifaceted characterization techniques such as XRD, BET, SEM, TPR, EDS, and XPS were used to analyze and investigate the effect of high pressure over the preparation of surface and bulk $MoS_2$ catalyst. Result from XRD, SEM, and BET demonstrated that $MoS_2$ was more dispersed as preparation pressure was increased, which resulted finer $MoS_2$ crystal size and higher surface area. EDS result confirmed that bulk composition was $MoS_2$ and XPS result showed that S/Mo mole ratio of surface was about 1.3. TPR showed that $MoS_2$ prepared at 30 atm possessed higher active surface sites than $MoS_2$ prepared at 1 atm and these sites could contribute to higher CO yield during methanation. Direct methanation was used to evaluate the CO conversion of the both catalysts prepared at 1 atm and 30 atm and reaction condition was at feed mole ratio of $H_2/CO=1$, GHSV=4800, 30 atm, temperature($^{\circ}C$) of 300, 350, 400, and 450. $MoS_2$ prepared at 30 atm showed more stable and higher CO conversion than $MoS_2$ prepared at 1 atm. Faster deactivation was occurred over $MoS_2$ prepared at 1 atm, which indicated that preparation pressure of $MoS_2$ catalyst was the dominant factor to improve the yield of direct methanation.

Biological conversion of CO2 to CH4 in anaerobic fixed bed reactor under continuous operation (혐기성 고정층 생물반응기의 연속운전을 통한 이산화탄소의 메탄전환)

  • Kim, Jaehyung;Koo, Hyemin;Chang, Wonseok;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.347-354
    • /
    • 2013
  • This study was carried out to examine different mole ratio of $H_2/CO_2$ and EBCT using the continuous system in the lab scale throughout biological methods with accumulated hydrogenotrophic methanogen that can convert $CO_2$ to $CH_4$. The experimental-based results with various gas mixtures of mole ratio of 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$), $H_2$ was converted more than 99% conversion rate. In case of $CO_2$, 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$) were $74.45{\pm}0.33%$, $95.8{\pm}10.7%$, respectively, in addition, the study was confirmed that the amount of $H_2$ was more needed than stoichiometric equations, where approach methods are empirical versus theoretical frameworks, for converting total $CO_2$. As such, we have noticed that $H_2$ was used for energy source of hydrogenotrophic methanogen for maintaining life. Regarding the results of the ratio of treatment by retention time, limitation of treatment capacity showed that $H_2$(99.9%) and $CO_2$(96.23%) at EBCT 3.3 hrs indicated stable conversion ratio, as well as appeared that methane production rate and $CO_2$ fixation rate were investigated $1.15{\pm}0.02m^3{\cdot}m^{-3}{\cdot}day^{-1}$ and $2.01{\pm}0.04kg{\cdot}m^{-3}{\cdot}day^{-1}$, respectively.

Development of Integrated NG Fuel Processor for Residential PEMFC system (가정용 고분자연료전지 시스템을 위한 통합형 천연가스 개질기 개발)

  • Seo Yutaek;Seo Dong Joo;Jeong Jin Hyeok;Yoon Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.231-234
    • /
    • 2005
  • 수소 기반의 에너지 사회는 중소규모 분산 발전과 연료 전지 자동차에서 시작될 거라는 예측이 지배적이다. 가정용 고분자 연료전지 시스템은 상업화에 가장 가까운 소규모 분산 발전 시스템중의 하나이며, 에너지기술연구위원에서는 가정용 고분자 연료전지에 수소를 공급하기 위한 천연가스 수증기 개질시스템의 개발을 진행해 왔다. 효율 향상과 제작의 용이성, 그리고 소형화에 초점을 맞추어 개발된 prototype-I은 $2.0Nm^3/hr$의 순수 수소 생산 용량을 가지고 있으며, 수증기 개질기와 수성가스 전이 반응기 수중기 생성 장치, 그리고 반응열 공급에 필요한 버너 등을 이중 동심원관에 통합한 형태이다. 수중기 개질과 수성가스 전이 반응을 거쳐 나오는 개질 가스의 조성은 $72.3\%\;H_2,\;4.8\%\;CH_4,\;0.7\%\;CO,\;22.2\%\;CO_2$이며, 이때 S/C 비율은 2.5였다. 고분자 연료 전지 공급 시 요구되는 CO 농도가 10ppm 이하이기 때문에, 본 시스템에는 선택적 산화 반응기를 2단으로 설치하여 CO. 농도를 10ppm 이하로 낮추어주었다. 전체 시스템의 열효율은 LHV 기준으로 $68\%$. Prototype-I의 운전을 통해 설계 개선안을 도출하였으며, 이를 적용해 제작한 prototype-II가 시험 운전 중이다,. 통합된 개질 시스템에서는 각 단위 반응기사이의 열교환을 최적화하여 단위 반응들이 적정 온도 범위에서 일어나도록 유도하는 것이 중요하다. Prototype-II는 수증기 개질 반응기와 WGS 반응기, 수증기 생성 장치 사이의 열교환율을 향상시켜 농도를 $2.5\%$로 감소시키면서 CO의 농도는 $1\%$이하로 유지하였다. 이 결과를 바탕으로 얻어진 메탄 전환율은 $87\%$이고, 열효율은 LHV 기준으로 $75\%$이다. 아울러 개선점을 적용한 선택적 산화 반응기를 제작하였다. 개질 가스와 산소의 혼합을 유도하고, 반응기 온도의 제어를 통해 선택적 산화 반응의 속도와 선택성을 향상시키고자 한다. 시스템의 운전을 통해 메탄 전환율과 열효율의 개선을 진행할 예정이다.

  • PDF

Catalytic activities and performance enhancement of Ni catalysts for CO2 reforming (이산화탄소 개질반응을 위한 니켈 촉매의 활성 및 성능향상)

  • Jun, So-Youn;Kim, Dong-Sun;Kim, Kweon-Ill
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.125-132
    • /
    • 2003
  • Activity improvement of Ni metal catalysts for carbon dioxide reforming was studied using HY-zeolite as the main supporter. As the reaction temperature increased, $CH_4$ and $CO_2$ conversions increased, and conversions higher than 80% was obtained above $700^{\circ}C$. As the Ni loading increased, the catalyst activity increased, and the highest activity was shown for the Ni loading of 13wt%. The HY-zeolite support showed the highest intial conversions of $CH_4$ and $CO_2$, but it showed faster deactivation than a ${\gamma}-Al_2O_3$ support. Nevertheless, it maintained the $CH_4$conversion higher than 80% after 24 hr reaction. The effect of promoters such as Mg, Mn, K, and Ca was also studied. It was observed that the Mg promotor exhibited the highest catalyst activity and less deactivation compared with Mn, K and Ca. After 24hr reaction, The optimum Mg content was found to be 5wt%.

  • PDF

Effects of $CO/CO_{2}$ Additives on The Reaction of Methane Activation using The Zeolite Catalyst (지오라이트 촉매를 이용한 메탄의 활성화 반응에서 일산화탄소/이산화탄소 첨가에 따른 영향)

  • Chung, Gui-Yung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.139-143
    • /
    • 2000
  • There appeared enhancements of the conversion of methane by adding a small amount of CO in the aromatization reaction of methane using the Mo-zeolite catalyst. In case of adding $CO_{2}$, $CO_{2}$ changed to CO first, and then the conversion reaction occurred. It was observed by using isotopes as reactants that CO is related to the aromatization reaction of methane.