• Title/Summary/Keyword: $CO_2$ 레이저 용접

Search Result 162, Processing Time 0.024 seconds

A Study on the Formation Mechanism of Discontinuities in $CO_2$ Laser Fusion Zone of Fe-Co-Ni Sintered Segment and Carbon Steel (Pe-Co-Ni 분말 소결 금속과 탄소강의 이종재료간 레이저 용접부의 결함형성기구 연구)

  • 신민효;김태웅;박희동;이창희
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • In this study, the formation mechanism of discontinuities in the laser fusion zone of diamond saw blade was investigated. $CO_2$ laser weldings were conducted along the butt between Fe base sintered tip and carbon steel shank with sets of variable welding parameters. The effect of heat input on irregular humps, outer cavity, inner cavity and bond strengh was evaluated. The optimum heat input to have a proper humps was in the range of 10.4~$17.6kJm_{-1}$. With increasing heat input, both outer and inner cavities were reduced. The outer cavity was caused by insufficient refill of keyhole, while inner cavity was caused by trapping of bubble in molten metal. The bubble came from sintered tip and intensive vaporization at bottom tip of the keyhole. A gas formation and low melting point element vaporization were not occurred during welding. We could not find any relationship between bond strength and amount of discontinuities. Because the fracture were occurred in not only sintered tip but also carbon steel shank due to hardness distributions.

Effect of Single Overload on the Fatigue Crack Growth Behavior of Laser Welded Sheet Metal (단일 과대하중에 의한 레이저 용접 판재의 피로균열 전파거동)

  • 곽대순;김석환;오택열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.161-169
    • /
    • 2004
  • In this study, we investigated fatigue crack growth behavior of laser welded sheet metal due to a single overload. Fatigue specimens were made using butt joint of cold rolled sheet metal that was welded by $CO_2$ laser. The fatigue crack propagation tests were performed in such a way that fatigue loading was parallel to the weld line while crack propagation was perpendicular to the weld line. Single overload was applied when fatigue crack tip was arrived near the weld line. The distances between the crack tip and the weld line at which a single overload was applied were 6, 4 and 2mm. The effect of specimen thickness and overload ratio on the fatigue behavior was determined. The plastic zone size of crack tip due to the single overload was determined from the finite element analysis. For investigating fatigue crack growth behavior, we used different thickness specimen 0.9mm and 2.0mm, and variable overload ratio applied fatigue crack propagation test. Also we used finite element analysis for investigating the plastic zone size of crack tip when single overload applied

The Low Cycle Fatigue Behavior of Laser Welded Sheet Metal for Different Materials (이종재료 레이저 용접 판재의 저주기 피로 특성)

  • Kim Seog-Hwan;Kwak Dai-Soon;Kim Woong-Chan;Oh Taek-Yul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.627-631
    • /
    • 2005
  • In this study, low fatigue behavior of laser welded sheet metal were investigated. Before welding, the cross section of butt joint was prepared only by fine shearing without milling process. Specimens were same sheet metal and welding condition that using automobile manufacturing company at present. Butt joint of cold rolled sheet metal was welded by $CO_2$ laser. It is used that welding condition such as laser welding speed was 5.5m/sec and laser output power was 5kW for 0.8mm and 1.2mm sheet metal. The laser weldments were machined same or different thickness and same or different material. In order to mechanical properties of around welding zone, hardness test was performed. Hardness of welding bead is about 2 times greater than base material. We performed the low cycle fatigue tests for obtaining fatigue properties about thickness and the weld line direction of specimen. The results of strain controlled low cycle fatigue test indicate that all specimens occur cyclic softening, as indicated by the decrease in stress to reach a prescribed strain.

  • PDF

Behavior of Fracture Deviation in the Impact Test of Narrow Laser Welds (충격 시험시 발생하는 레이저 용접부의 파괴 이탈 현상)

  • Na, Il;Kim, Jae-Do
    • Proceedings of the KWS Conference
    • /
    • 1993.05a
    • /
    • pp.120-124
    • /
    • 1993
  • The Charpy V impact test on subsize was performed on narrow laser welds of low carbon steel sheets, joined by using a continuous wave 3kW CO$_2$ laser. Under certain conditions, a bimodal fracture behaviour has been experienced in Charpy V impact test of narrow laser beam welds. Deviation of the fracture path from the fusion zone into the base metal was dominated at high test temperature. It can be seen that the deviation always occurred after ductile initiation. If the deviation occurs on a small testing specimen, the same trend would happen on the actual laser welded structure. Fracture will then propagate through the base material even if the weld metal has low toughness.

  • PDF

Effect of Laser Welding Variables on the Formability of Si Added Steel Welds (3wt% Si 첨가강의 레이저용접부 성형성에 미치는 용접변수의 영향)

  • Park, Joon-Sik;Woo, In-Su;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.15-21
    • /
    • 2006
  • The aim of present study is to investigate the effect of welding parameters and heat treatment conditions on the formability of the $CO_2$ laser welded silicon steel sheet. It was found that there is optimum range of the heat input ($0.6{\sim}0.7kJ/cm$) and gap distance ($0.125{\sim}0.150mm$) for the high tensile strength and the avoidance of the fracture in weld metal. Also, it was essential fur the improvement of formability to perform pre- and post-welding heat treatment which cause the uniform mixture of base metal and welding consumable.

Characteristics of $CO_2$ Laser Cladding with High Viscosity Mixed Powder (용제와 혼합한 금속분말의 $CO_2$ 레이저 클래딩 특성)

  • 김재도;전병철;이영곤;오동수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.481-485
    • /
    • 2001
  • Laser cladding processing allows rapid transfer of heat to the material being processed with minimum conduction into base metal. The effect of $CO_2$ laser cladding with high viscosity mixed powders was investigated. High viscosity mixed powder consists of bronze powder and flux that is used at a high temperature condition. The mixed powder has a high viscosity that it can be easily pasted over a curved or slope substrate. The device for mixed powder was designed and manufactured. It consists of the high viscosity mixed powder feeding system, the preheating system and the shielding gas system which prevents the clad layer from being oxidized. The results of experiment indicated that the feed rate of high viscosity mixed powder was important for later cladding with mixed powder feeding. The high viscosity mixed powder and substrate must be preheated to prevent porosity from breaking at the clad layer. The experimental result shows that the high viscosity mixed can be applied for laser cladding process.

  • PDF

Effect of shield gas on the characteristics of $CO_2$ laser welded 600MPa grade high strength steel (600MPa급 자동차용 고장렬강판의 $CO_2$ 레이저 용접부의 특성에 미치는 보호가스의 영향)

  • Han Tae-Kyo;Lee Bong-Keun;Kang Chung-Yun
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2004
  • The effect of shield gas on the weldability, mechanical properties and formability of CO2 laser weld joint in 600MPa grade high strength steel was investigated. Bead on plate welds were made under various welding speed and shield gas. Tensile test was carried out under the load of perpendicular and parallel direction to the weld line, Formability of the joint was evaluated by Erichsen test. As the welding speed increases, the porosity fraction decreases. The porosity fraction in the joint used Ar-$50\%He$ mixed gas as a shield gas was lower than that of the joint used Ar gas. Hardness at the weld metal of full penetrated joint was nearly equal to that of water quenched raw metal. In a tensile test under a perpendicular load to the weld axis, strength and elongation of joint produced by optimum condition were nearly equal to those of base metal. However, the strength of joint in a tensile test under a parallel load to weld axis was higher than that of raw metal, but the elongation of joint was lower than that of raw metal. Elongation and formability were further increased by the method of using Ar+He mixed gas as a shield gas as compared with Ar gas. Formabilities of joints were recorded ranging from $58\%\;to\;70\%$ of that of base metal with different shield gases.

  • PDF

Cladding of Cu and Bronze/Al Alloy by $CO_2$ Laser (고출력 $CO_2$레이저빔에 의한 구리, 청동/알루미늄 합금 클래딩)

  • 강영주;김재도
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.109-115
    • /
    • 1997
  • Laser cladding is a technique for modification of metal surface. In this laser cladding experiment a metal powder feeding system was developed for more efficient laser cladding. This system can reduce processing time and be used simpler than the conventional method. The feeding of metal powder has given a rise to the process for sequential buildup of bulk rapidly solidified materials in the form of fine powder stream to the laser cladding process. The parameters of laser cladding have been investigated using this experimental equipment. Bronze on aluminum alloy and copper on aluminum alloy were experimented by using defocused beam, powder feeding system, and gas shielding. Good cladding was achieved in the range of beam travel speed of 2.25m/min. In the case of copper/aluminum and bronze/aluminum substrate, the absorption of laser beam was too high to produce low diluted clad. In the case of copper/1050 aluminum, the optimal laser cladding condition was of laser power of 2.8kW, powder feed rate of 0.31g/s and beam travel speed of 2.25m/min. In the case of bronze/aluminum the optimal condition is of laser power of 2.5kW, powder feed rate of 0.31g/s, and beam travel speed of 2.36m/min.

  • PDF

Remote Welding of Automobile Components using CO2 Laser and Scanner (자동차 부품의 원격 레이저 용접기술)

  • Suh, Jeong;Lee, Mun-Yong;Jung, Beong-Hun;Song, Mun-Jong;Kang, Hie-Sin;Kim, Jeong-O
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.74-78
    • /
    • 2008
  • The laser welding of the car body and components has been spread in the automotive industry. The Nd:YAG laser welding system could be used in 3D welding with robot. However, this system cannot efficiently reduce the welding cycle time according to various welding sequences because the robot's moving time is same that of the resistant spot welding system. But the remote welding system with high power $CO_2$ laser and scanner makes it possible welding cycle time much faster than the robot laser welding system. In the $CO_2$ laser remote welding system, laser beam can be rapidly transferred to a workpiece by moving mirrors of scanner system. So, it makes reducing the cycle time of welding process and shaping various welding patterns easily. Therefore, in this paper, the characteristic of weld strength according to patterns of weld bead on $CO_2$ laser welding was investigated. Also, the relationship between shape of weld bead and value of tensile load was studied. Finally, the optimum remote welding condition for car bumper was investigated.

Formability of Laser Welds in Zn-coated Steel Sheets (아연도금강판에 대한 레이저 용접부의 성형성)

  • 박찬철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.176-180
    • /
    • 1996
  • Continuous wave CO$_{2}$laser beam welding and formability of zinc coated steel shets were investigated. First, optimal welding condition could be obtained in but welding by using the data for heat input and welding velocity. The highest value of Erichsen test is 79.3% compare to that of base matel. Secondly, Formability of laser welds was investigated by using ball punch tester. Finally, the forming results of butt-welded sheets showed that the joing design was important to apply the laser welded blank in the automotive production.

  • PDF