• Title/Summary/Keyword: $CO_{2}$ Gasification

Search Result 222, Processing Time 0.022 seconds

The Adsorption of COS with a Modified-Activated Carbon for Ultra-Cleanup of Coal Gas (석탄가스의 초정밀 정제를 위한 변형된 활성탄의 흡착특성 연구)

  • Lee, You-Jin;Park, No-Kuk;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • The adsorption properties of the activated carbon-based adsorbents were studied to remove COS emitted from $SO_2$ catalytic reduction process on the integrated gasification combined cycle (IGCC) system in this work. Transition metal supported catalysts and mixed metal oxide catalysts were used for the $SO_2$ catalytic reduction. The mechanism of COS produced from the $SO_2$ reduction and the COS concentration s according to the reaction temperature were investigated. In this study, an activated carbon and a modified activated carbon doped with KOH were used to remove the very low concentration of COS effectively. The adsorption rate and the breakthrough time of COS were measured by a thermo gravity analyzer (TGA, Cahn Balance) and a fixed bed flow reactor equipped with GC-pulsed flammable photometric detector (PFPD), respectively. It was confirmed that the COS breakthrough time of the activated carbon doped with KOH was longer than that of an activated carbon. In conclusion, the modified-activated carbon having a high surface area showed a high adsorption rate of COS produced from the $SO_2$ reduction.

  • PDF

Steam gasification characteristics of oregon pine wood pellet (우드 펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Choi, Sun-Yong;Lee, Moon-won;Kim, Lae-Hyun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.192-192
    • /
    • 2010
  • 현재 산업과 과학의 발달로 인한 무분별한 화석연료의 사용은 에너지자원의 고갈과 환경오염의 문제를 야기시켜, 이의 해결을 위한 청정 신에너지에 대한 연구가 전 세계적으로 집중되고 있다. 이 중 바이오매스는 화석연료보다 비교적 높은 H/C 비를 갖기 때문에 신에너지인 수소 또는 Syngas를 생산하기 위한 가스화 특성이 우수한 특징을 가지고 있으며, 구성성분 내 중금속, 황, 질소를 거의 함유하지 않는 점에서 환경오염 저감과 동시에 대체 신에너지로써 각광을 받고 있다. 이에 본 연구에서는 목질계 바이오매스인 Wood pellet (미송)에 대하여 고정층 반응기를 이용하여 질소분위기하에서 온도 및 Steam/Biomass Ratio(이하 SBR) 조건에 따른 가스화 특성으로 고찰하는데 그 목적을 둔다. 온도의 영향에 대하여, 높은 온도 범위에서 수소 수율이 증가함을 알 수 있었다. SBR에 대한 영향으로서, 저온 (700, $800^{\circ}C$)에서는 SBR=1에서는 수소의 수율이 증가하였으나 SBR=2, 3에서 감소하는 것을 보였다. 하지만 $900^{\circ}C$에서는 SBR이 증가 할수록 수소의 수율이 증가하는 것으로 나타났다. 또한 볼륨비로 나타내었을 경우 $H_2/CO(vol/vol)$의 경우 $900^{\circ}C$, SBR=3에서 0.73%로 water gas shift reaction이 가장 잘 일어난 것을 확인했고, $H_2/CH_4(vol/vol)$의 경우 마찬가지로 위의 조건과 동일조건에서 2.59%로 steam reforming이 가장 잘 일어난 것을 확인할 수 있었다. 최종적으로 본 실험에서는 $900^{\circ}C$, SBR=3인 경우에 가장 높은 수소수율을 얻을 수 있으며, 이때 수소의 수율은 32.7 Vol%였다.

  • PDF

China's Fossil Fuel Market and IGCC (중국의 석탄 에너지 시장과 IGCC)

  • Zhang, Yanping;Ku, Jayeol;Um, Shingyoung;Kim, Suduk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.137.2-137.2
    • /
    • 2010
  • With current real economic growth of more than 10% per year, the Chinese energy consumption is rapidly increasing. Coal supply consists of the vast majority of China's total energy consumption requirements in 2008. China, the largest energy consumer, is expected to be heavily dependent on coal for future power generation, too (IEA,2009). A growing concern on global warming, on the other hand, drives Chinese government to declare her commitment to the reduction of CO2 emission by 2020. In this paper, China's energy market is examined for the current and future primary energy mix. Coal is found to be the biggest part accounting for 68.7% of total primary energy consumption while coal-fired power accounts for over 80% of the total power generation. The importance of Clean Coal Technology is being discussed based on the findings of the importance of coal in China's economy and its sustainable development. Among the technologies involved, a brief investigation of IGCC(Integrated Gasification Combined Cycle) technology with a review on current IGCC projects in China are provided from the perspective of environmental benefits. Studies on regional Chinese power market is also conducted. It is found that the regulated power tariff in electricity system makes the power suppliers suffer from financial loss and changes in the electricity price system is under serious consideration by Chinese government. Even though Chinese power market system causes difficulties of commercialization for IGCC technology, the potential benefits will be high due to China's huge requirements of power generating capacity and its heavy reliance on coal if the electricity price system can be changed smoothly.

  • PDF

Algae Culture Characteristics Viewed with Continuous and Cyclic Irradiation in High Rate Algae Biomass Culture Pond (고율 조류 생세포체 배양지에서 조사 조건으로 본 조류 배양 특성)

  • 공석기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • The utilization methods of algae biomass have been studied constantly in whole world. These are $\circled1$the wastewater treatment if waste stabilization pond and oxidation ditch etc. and $\circled2$the biosorption of heavy metals and recovery of strategic' precious metals and $\circled3$the single-celled protein production and the production of chemicals like coloring agent and $\circled4$the production of electric energy through methane gasification. The culture system also has been developed constantly in relation with such utilization method developments. In the result of experimental operation under continuous and cyclic irradiation of light, using high rate algae biomass culture pond(HRABCP), which had been made so as to be an association system with the various items which had been managed to have high efficiency for algae culture, the algae production of the 12 hours-irradiance pond was 41.48 Chlorophyll-a ${\mu}g/L$ only in spite of having the more chance of $CO_2$ synthesis to algae cell than the 24 hours-irradiance pond. This means that the energy supply required for dark-reaction of photosynthesis is very important like this. The difference of algae production between continuous and cyclc irradiation explains that the dark-reaction of photosynthesis acts on algae production as the biggest primary factor. The continuous irradiance on HRABCP made the good algae-production($1403.97{\;}{\mu}g$ Chlorophyll-a/mg) and the good oxygen-production(5.8 mg $O_2/L$) and the good solid-liquid seperation. especially, DO concentration through the oxygen-production was enough to fishes' survival.

  • PDF

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..

Study on the Combustion Reactivity of Residual Oil as a New Fuel for Power Generation (발전용 신종액체 연료의 연소반응성 해석)

  • Park, Ho-Young;Seo, Sang-Il;Kim, Young-Joo;Kim, Tae-Hyung;Chung, Jae-Hwa;Lee, Sung-Ho;Ahn, Kwang-Ick;Jeong, Young-Gap
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.534-545
    • /
    • 2011
  • This paper describes the evaluation of kinetic parameters for pyrolysis and carbon char oxidation of residual oil. The non-isothermal pyrolysis of residual oil was carried out with TGA (Thermo-Gravimetric Analyzer) at heating rate of 2, 5, 10 and $20^{\circ}C/min$ up to $800^{\circ}C$ under N2 atmosphere. The first order and nth order pyrolysis models were used to fit the experimental data, and the nth order model was turned out to follow the experimental data more precisely than the first order model. For carbon char oxidation experiment, TGA and four heating rates used in pyrolysis experiment were also adapted. The kinetic parameters for the residual carbon char particle were obtained with three char oxidation model, that is, volume reaction, grain and random pore model. Among them, the random pore model described the char oxidation behaviour quite well, compared to other two models. The non-linear regression method was used to obtain kinetic parameters for both pyrolysis and carbon char oxidation of residual oil.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.

Thermo-Chemical Conversion Characteristics of Wood wastes in a Fixed micro-reactor (고정층 마이크로 반응기에서의 폐목재 열화학적 전환 특성)

  • Lee In-Gu;Lee Jae-Goo;Kim Jae-Ho;Lee See-Hoon
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.66-73
    • /
    • 2006
  • The effects of operation conditions, such as bed temperature, temperature rising rate, particle size, moisture content and so on, on thermo-chemical conversion of waste wood have been determined in a micro fixed bed gasifier. The samples were waste wood-chips such as pine, oak, acacia and ginkgo. The thinning timbers used as reactants in the experiments had $35wt\%$ moisture content, $0.5wt\%$ ash content and 4,550 kcal/kg heating value on a dry basis. A typical product distribution was a $40wt\%$ liquid, $20wt\%$ solid, and $40wt\%$ dry syngas. The syngas concentration was affected by operation conditions and average syngas concentration was $H_2:40vol\%,\;CO:30vol\%,\;CH_4:10vol\%$.

Off-design Performance Characteristics of SOFC-GT Hybrid System Operating with Syngas Fuel (합성가스를 연료로 사용하는 고체산화물연료전지-가스터빈 하이브리드 시스템의 탈설계점 성능 특성)

  • Choi, Jung-Il;Sohn, Jeong-Lak;Song, Seung-Jin;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.269-274
    • /
    • 2010
  • As a preliminary study on a SOFC-GT hybrid system integrated a with coal-gasification system, the influence of the concentrations of $H_2$ and CO in syngas on the performance characteristics of the hybrid system is investigated. It is expected that the differences in the heating values of fuels with different compositions trigger the off-design operation of the gas turbine and result in different performance characteristics of the overall hybrid system. Syngas compositions are found to affect the SOFC performance. Performance of hybrid system with carbon monoxide is poorer than the case with hydrogen. In the case of part-load performance with syngas, performance degradation at part-load operating conditions with hydrogen is more dominant than the case with carbon monoxide.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성)

  • Lee, Min Chul;Joo, Seong Pil;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.632-638
    • /
    • 2013
  • This paper describes on the flame stability and combustion instability of coal derived synthetic gas especially for gases of Buggenum IGCC in Netherlands and Taean IGCC in Korea. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Flame stability map is plotted according to the flame structure by dividing all regimes into six, and only regime I and II are identified to be stable. Both syngases of Taean and Buggenum with nitrogen integration corresponds to regime II in which syngas burnt stably and flame coupled with outer recirculation flow. Stable regime of Buggenum is larger than that of Taean when considering only $H_2$/CO ratio due to higher content of hydrogen. However, when considering nitrogen dilution, syngas of Taean is burnt more stably than that of Buggenum since more nitrogen in Buggenum has negative effect on the stability of flame.