• Title/Summary/Keyword: $COD_{cr}/T-N$ ratio

Search Result 19, Processing Time 0.029 seconds

Treatment of Artificial Sewage Using a Zeolite Column (제올라이트 칼럼에 의한 인공생활하수처리)

  • Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.178-188
    • /
    • 2002
  • Constructed wetlands typically cost less to build and operate, and require less energy than standard mechanical treatment technology but they have similar performance to centralized wastewater treatment plants. Therefore, they were constructed especially many in rural areas, where are small villages but not industries. Plantless column tests were performed to investigate the possibility on using zeolite as a filter medium of constructed wetland for the wastewater treatment. Removal efficiency was $COD_{Cr}$ 94.63% T-P 41.41% and $NH_4^+-N$ 99.75% at hydraulic load 314 $L/m^2{\cdot}d$ and filtering height 100 cm filled with a zeolite mixture. This zeolite mixture consisted of 1 : 1 by volume of zeolites in the diameter range of 0.5 to 1 mm and 1 to 3 mm. Accordingly, hydraulic load 314 $L/m^2{\cdot}d$ was considered as optimal. Three zeolite mixtures were used to determine the optimal mixing ratio by volume of a zeolite (A) in the diameter range of 0.5 to 1 mm to a zeolite (B) in the diameter range of 1 to 3 mm 1 : 3, 1 : 1 and only B in A to B by volume were tested at hydraulic load 314 $L/m^2{\cdot}d$ and filtering height 100 cm $COD_{Cr}$ removal efficiency was more than 89% at mixing ratios of 1 : 3 and 1 : 1 in A to B. That of T-P ranged 56.42 to 58.72% and, that of T-N and $NH_4^+-N$ was 87% and 99% regardless of mixing ratios of two zeolites. Removal efficiency was lower at the column filled with only B. Removal efficiency was better at Inter medium filled with mixing ratio 1 : 1 in A to B than with the other mixing ratios. Thus, it was found that the mixture of mixing ratio 1 : 1 in A to B was appropriate far Inter medium of constructed wetland Removal efficiency was higher in down-flow than in up-flow, and all contaminants were removed most in 20 cm filter height near feeding area.

Advanced Sewage Treatment by the Modified SBR(Sequencing Batch Reactor) Process (변형 연속회분식 반응기를 이용한 오수의 고도처리)

  • 김병군;서인석;홍성택;정위득
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2002
  • This study was performed to treat a sewage at the upper stream of dam using modified sequencing batch reactor, During the operating period, average $COD_{cr}$, removal efficiency was about 85% but average T-N and ${PO_4}^{3-}-P$ removal efficiencies were 43% and 30% respectively. Because the organic matter was very low compared with nitrogen and phosphorous in influent($BOD_{5}/{NH_4}^{+}-N{\;}={\;}2,{\;}BOD_{5}/{PO_4}^{3-}-P{\;}={\;}15.6$), nitrogen and phosphorus removal efficiency was relatively low. Average nitrogen removal efficiency was 50 % at $10^{\circ}C$ or above and it was 36 % at $10^{\circ}C$ or below. As reactor was located in outdoor without any thermostat, temperature decreased at least $2.4^{\circ}C$ in the winter season. Therefore, if we would apply this modified sequencing batch reactor to sewage which concentration of organic matter was very low compared with nitrogen and phosphorous, we have to addition of external carbon and installation of any thermostat.

Phosphorus Removal (Characteristics by Anoxic Oxic Process) by Anoxic and Oxic Processed Combined with Iron Electrolysis (철 석출장치가 결합된 무산소.호기공정에 의한 인 제거 특성)

  • Kim, Min-Ho;Kim, Young-Gyu;Kim, Soo-Bok
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.502-509
    • /
    • 2010
  • In this study, the (phosphorous removal) the characteristics of phosphorous removal due to (the iron compound precipitated) iron compound precipitation by iron electrolysis in (the anoxic. oxic process) anoxic and oxic processes (equipped with the) in an iron precipitation device were analyzed. During the device operation period, the average concentration of BOD, T-N, and T-P were 219.9 mg/l, 54.6 mg/l and 6.71 mg/l, respectively. The BOD/$COD_{Cr}$ ratio was 0.74, and the BOD/T-N and BOD/T-P ratios were 4.0 and 32.8, respectively. The removal rate of (the organic matters) organic matter (BOD and $COD_{Cr}$) was very high at 91.6% or higher, and that of nitrogen was 80.5%. The phosphorous concentration (of the final) in the treated water was 0.43 mg/l (0.05-0.74 mg/l) on average, and the removal efficiency was high at 90.8%. The soluble T-P concentrations in (an) the anoxic reactor, oxic reactor (II) and final treated water were 1.99 mg/l, 0.79 mg/l and 0.43 mg/l, respectively, which indicated that the phosphorous concentration in the treated water was very low. Regardless of the changes in the concentrations of (organic matters) organic matter, nitrogen and phosphorous in the influent, the quality of the treated water was relatively stable and high. The removal rate of T-P somewhat increased with the increase in the F/M ratio in the influent, and it also linearly increased in proportion to the T-P loading rate in the influent. In the treatment process used in this study, phosphorous was removed (using) by the precipitated iron oxide. Therefore, the consumption of organic (matters) matter for biological phosphorus removal was minimized and (most of the organic matters were) was mostly used as the organic carbon source for the denitrification in the anoxic reactor. This (can be an economic) treatment process (without the need for the supply of additional organic matters) is economic and does not require the supply of additional organic matter.

Estimation of Nutrient Removal Efficiency and Phase Conversion Rate of Single Reactor SBR and SBR with Flexible Vertical (단일 및 가변형 SBR 공법의 영양염류 처리효율 및 "상"전환속도 평가)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1215-1221
    • /
    • 2005
  • The purpose of this research was to compare the nutrient removal efficiency, and to estimate the net reaction time in order to calculate a "phase" transfer rate. SBR(SBR1) with flexible verticals and single reactor SBR(SBR1). Consequently, the removal efficiencies of $COD_{Cr}$, and $BOD_5$ in SBR1 and SBR2 were 91.5%, 97.5% and 90.4%, 97.3%, Respectively. Accordingly, the organic removal efficiency was not distinguished in both processes. In the T-N and T-P removal efficiencies, however, SBR1 obtained higher removal efficiency than SBR2, at 12.1% and 7.6% respectively. Also, in the experiment to estimate the "phase" transfer rate, SBR1 was higher than SBR2 Because SBR1 has two phases in the single reactor simultaneously, it has the buffer capacity to reduce the "phase" transfer time and provides a definite reaction condition.

Positive Pilot Research of SBR Process with Flexible Vertical (가변형 간벽을 이용한 SBR 공정의 실증 Pilot 연구)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.438-444
    • /
    • 2005
  • This study is to install the flexible vertical in order to separate not only the time but also the space in the single reactor by opening and closing the flexible vertical, and to intensify the aerobic, anaerobic and anoxic reactions by reducing the time to activate the microorganism for nitrification, denitrification, release of organic phosphate and luxury uptake of ortho-phosphate. Eventually the result of this study obtained each 90.9%, 76.4% for the removal efficiency of total nitrogen and phosphate. Also, content rate of phosphate at excess sludge was higher $25{\sim}30%$ for SBR reactor with the flexible verticals than existing SBR process. It would be concluded that SBR reactor with flexible verticals is promising for nitrogen and phosphate removal conditions than conventional SBR processes.

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

The Characteristics of Microbial Population Community Structure by an Addition of External Carbon Source in BNR Process for Low C/N Ratio Sewage Treatment (낮은 C/N비 하수의 외부 탄소원 주입에 따른 생물학적 질소제거에서 미생물 군집 구조특성)

  • Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.831-838
    • /
    • 2008
  • This study investigated the characteristics of nitrogen removal and microbial community in a lab-scale A$_2$O activated sludge process filled with the fluidized media at an aerebic basin. The change of microbial community was monitored based on quinone profiles of activated sludge according to feeding sewage with/without external carbon source. Low C/N ratio(COD$_{Cr}$/T-N of 1.24) sewage was fed. The obtained results from this study were as follows; Ubiquinone(UQ) in the influent was in the descending order of UQ-8, UQ-10 and UQ-9. Menaquinone(MK) was simpler and much less than UQ. The ratio of UQ/MK was less than 0.41 and the dissimilarity was below 0.26. Without an external carbon source, MK-8 was the dominant species and there were 3 kinds of quinone species and low DQ and EQ values in an anaerobic basin. The ratio of UQ/MK increased to 2.3 in an anoxic basin. In an oxic basin, UQ-7 and UQ-8 were the dominant species. UQ-7 was dominating in suspended microorganisms, while UQ-8 was in attached microorganisms. With an external carbon source addition, MK-8 decreased but UQ-8 increased in an anaerobic basin. So did quinone species, DQ and EQ values. There was also a change in an anoxic basin with the improvement of denitrification. UQ-8 decreased instead, MK-7 and MK-8 increased. UQ/MK ratio decreased 2.3 to 1.4. It means that the dominant species change from Pseudomonas sp. to Bacillus and Micrococcus species. etc. In an oxic basin, UQ-8 replaced UQ-7 in suspended microorganisms and UQ-10 replaced UQ-8 in attached microbials. This seemed related with the growth of Nitrosomonas and Nitrobactor species.

A Study on the Optical Internal Recycle Rate and MLSS Concentration of Membrane Coupled $A_2O$ Process for Wastewater Treatment (하수처리를 위한 막결합형 $A_2O$공정에서 최적 내부 순환율 및 MLSS 농도에 관한 연구)

  • Kim Kwan-Yeop;Kim Jin-Mo;Kim Hyung-Soo;Lee Sang-Bek;Park Eugene;Bae Sung-Soo
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • The purpose of this study is to obtain practical information about membrane coupled $ A_2O$ system for muncipal wastewater treatment. A flat-plate microfiltration (MF) module with a pore size $0.25\;{\mu}m$ was submerged into the aeration basin and treated water was filtrated through the membrane by continuous suction with low pressure. The system was operated with synthetic wastewater to find operational parameters of internal recycle ratio and maximum MLSS showing best water quality and long-term stability. The internal recycle was defined as type 1 for aerobic to anoxic tank and type 2 for anoxic to anaerobic tank, respectively When the flux was maintained at $0.015\;m^3/m^2/hr$ (15 LMH) with 2Q type 1 internal recycle ratio, the optimal operational setting were 10 internal recycle ratio for type 2 and maximum MLSS of 11,000 mg/L among tested conditions. At this condition, removal efficiencies of BOD, CODcr, T-N and T-P showed $97.3\%,\;94.2\%,\;64.0\%,\;63.0\%$, respectively.

Effect of Air-flow on Enhanced Nutrient Removal and Simultaneous Nitrification/Denitrification in DMR Biofilm Process (DMR 생물막 공정에서 포기량에 따른 질산화 동시 탈질화 및 영양염류 제거특성)

  • Kim, Il-Kyu;Lee, Sang-Min;Lim, Kyeong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.992-998
    • /
    • 2008
  • Recently, a new concept for nitrogen removal that is simultaneous nitrification and denitrification(SND) has been studied for wastewater treatment process. The DMR(Daiho Microbic Revolution) process that used in this study consists of two suspended anoxic, anaerobic reactors and an aerobic biofilm reactor. The function of aerobic environment and the intensity of air flow rate(2.0, 1.0, 0.5, 0.4, 0.2 L/min) were studied in the biofilm reactor; also SND and nutrient removal efficiencies were investigated. Experimental results indicated that the change in air flow did not affect COD$_{Cr}$ removal significantly. Thus sustained at 93%. The lower the air flow rate, the higher T-N removal efficiency was attained(i.e.80% at 0.2 L/min). SND efficiency was 62, 65, 72 and 78% corresponding to each air flow rate. T-P removal was sensitive to aeration intensity and removal enhanced from 75% to 96% when the air flow rate was changed from 2.0 to 0.5 L/m; however second release occured in the clarifier at 0.2 L/min. Phosphorus content of activated sludge was 5.0%, as P releases and acetate uptake a ratio of 0.75 mg P/ mg HAc.