• 제목/요약/키워드: $CH_4/Ar$ gas

검색결과 98건 처리시간 0.026초

아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과 (Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode)

  • 최용선;이영기;김정열;이유기
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.

Etch Properties of HfO2 Thin Films using CH4/Ar Inductively Coupled Plasma

  • Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권6호
    • /
    • pp.229-233
    • /
    • 2007
  • In this study, we carried out an investigation of the etching characteristics(etch rate, selectivity) of $HfO_2$ thin films in the $CH_4/Ar$ inductively coupled plasma. It was found that variations of input power and negative dc-bias voltage are investigated by the monotonic changes of the $HfO_2$ etch rate as it generally expected from the corresponding variations of plasma parameters. At the same time, a change in either gas pressure or in gas mixing ratio result in non-monotonic etch rate that reaches a maximum at 2 Pa and for $CH_4(20%)/Ar(80%)$ gas mixture, respectively. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as showed an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CH_4-containing$ plasmas.

$Ar/CH_4$ 혼합가스를 이용한 ITO 식각특성

  • 박준용;김현수;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.244-244
    • /
    • 1999
  • Liquid Crystal Displays(LCDs) 투명성 전도막으로 사용하는 Indium Tin Oxide (ITO)의 고밀도 식각특성을 조사하였다. 특히 ITO식각의 경우, pixel electrode 전극에서 사용되는 underlayer인 SiO2, Si3N4와의 최적의 선택비를 얻는데 중점을 두고 있다. 따라서 본 실험에서는 Inductively Coupled Plasma(ICP)를 이용하여 source power, gas combination, bias voltage, pressure 및 기판온도에 따른 ITO의 식각 특성과 이의 underlayer인 SiO2, Si3N4와의 선택비를 조사하였다. Ar과 CH4를 주된 식각가스로서 사용하였으며 첨가가스로는 O2와 HBr를 사용하였다. ITO의 식각특성을 이해하기 위하여 Quadruple Mass Spectrometry(QMS), Optical emission spectroscopy(OES) 이용하였으며, 식각된 sample의 잔류물을 조사하기 위하여 X-ray photoelectron spectroscopy(XPS)를 이용하여 분석하였다. Ar gas에 적정량의 CH4 혼합이 순수한 Ar 가스로 식각한 경우에 비하여 ITO와 SiO2, Si3N4의 선택비가 높았으며, 더 높은 식각 선택비를 얻기 위하여 Ar/CH 분위기에서 첨가가스 O2, HBr을 사용하였다. Source power 및 bias 증가에 따라 ITO의 식각률은 증가하나, underlayer와의 선택비는 감소함을 보였다. 본 실험에서 측정된 ITO의 high 식각률은 약 1500$\AA$/min이며, SiO2, Si3N4와의 high selectivity는 각각 7:1, 12:1로 나타났다. ITO의 etchrate 및 선택비는 source power, bias, pressure, CH 가스첨가에 의존하였지만 기판온도에는 큰 변화가 없음을 관찰하였다. 또한 적정량의 가스조합으로 식각된 시편의 잔류물을 줄일 수 있었다.

  • PDF

시뮬레이션에 의한 CF4, CH4, Ar혼합기체(混合氣體)에서 전자(電子)에너지분포함수 (A Simulation of the Energy Distribution Function for Electron in CF4, CH4, Ar Gas Mixtures)

  • 김상남
    • 전기학회논문지P
    • /
    • 제52권1호
    • /
    • pp.9-13
    • /
    • 2003
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f(\varepsilon)$ has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.

CF4, CH4, Ar 혼합기체의 전자이동속도 (The Drift Velocity of Electrons in CF4, CH4, Ar Mixtures Gas)

  • 김상남
    • 전기학회논문지P
    • /
    • 제60권3호
    • /
    • pp.105-109
    • /
    • 2011
  • Drift Velocity of Electrons in pure $CF_4$, $CH_4$ and mixtures of $CF_4$ and Ar. Have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF

Dual-frequency $CH_2F_2/H_2/Ar$ capacitively coupled plasma를 이용한 실리콘질화물과 ArF PR의 무한 선택비 식각 공정 (Infinite Selectivity Etching Process of Silicon Nitride to ArF PR Using Dual-frequency $CH_2F_2/H_2/Ar$ Capacitively Coupled Plasmas)

  • 박창기;이춘희;김희대;이내응
    • 한국표면공학회지
    • /
    • 제39권3호
    • /
    • pp.137-141
    • /
    • 2006
  • Process window for infinite etch selectivity of silicon nitride $(Si_3N_4)$ layers to ArF photoresist (PR) was investigated in dual frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters such as low frequency power $(P_{LF})$, $CH_2F_2$ and $H_2$ flow rate in $CH_2F_2/H_2/Ar$ plasma. It was found that infinite etch selectivities of $Si_3N_4$ layers to the ArF PR on both blanket and patterned wafers can be obtained for certain gas flow conditions. The etch selectivity was increased to the infinite values as the $CH_2F_2$ flow rate increases, while it was decreased from the infinite etch selectivity as the $H_2$ flow rate increased. The preferential chemical reaction of the hydrogen with the carbon in the polymer film and the nitrogen on the $Si_3N_4$ surface leading to the formation of HCN etch by-products results in a thinner steady-state polymer and, in turn, to continuous $Si_3N_4$ etching, due to enhanced $SiF_4$ formation, while the polymer was deposited on the ArF photoresist surface.

PECVD로 증착된 불화 유기박막의 특성 평가 (Characterization of Fluorocarbon Thin Films deposited by PECVD)

  • 김준성;김태곤;박진구;신형재
    • 마이크로전자및패키징학회지
    • /
    • 제8권2호
    • /
    • pp.31-36
    • /
    • 2001
  • Plasma Polymerization를 이용하여 Teflon-like 불화 유기 박막을 Si, $SiO_2$, Al, TEOS 위에 증착하였다. Difluoromethane $(CH_2F_2$)에 Ar, $O_2$, 그리고 $CH_4$를 첨가하여 첨가 가스에 따른 불화 유기 박막의 특성을 평가하였다. 각각의 첨가가스에 대하여 압력, 온도, 그리고 첨가가스의 비율을 변화시켜 박막을 증착하여 정접촉각 통한 표면의 친수성 (hydrophilicity)과 소수성(hydrophobicity) 정도를 관찰하였다. Ar을 첨가한 경우 Ar 첨가량과 power의 증가에 따라 정접촉각의 감소를 관찰하였다. 그러나 증착압력이 증가함에 따라 정접촉각이 증가하였다. Ar 첨가시 2 Torr이상의 증착압력에서 분말형태의 초소수성 불화 유기박막을 얻을 수 있었다. $O_2$를 첨가한 경우, $O_2$의 첨가량과 증착압력이 증가함에 따라 정접촉각은 감소하였다. 약 100W까지의 power에서는 정접촉각은 일정하였지만 power의 증가에 따라 정접촉각은 감소하여 200W에서는 천수성표면을 얻을 수 있었다. $CH_4$를 첨가하여 불화유기박막을 증착하였을 경우 $CH_4/CH_2F_2$비율이 5까지 급격한 증가를 나타내었고, 비율이 5이상인 경우에서는 일정한 정접촉각을 나타내었다. 화학기상증착에 의해 제조된 박막보다 plasma polymerization으로 제작된 불화유기박막이 히스테리시스(hysteresis)가 낮은 불화유기박막을 형성하였다.

  • PDF