An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
한국진공학회:학술대회논문집
/
한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
/
pp.129-129
/
2016
Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.
최근 화석연료 대체 에너지원으로서 자동차용으로 연구 개발 및 응용되고 있는 고분자 전해질 연료전지(PEMFC: Proton exchange membrane fuel cells)에서 분리판(Bipolar Plate)은 스택 전체 무게의 80%, 스택 가격의 60% 정도로 가장 높은 비중을 차지한다. 분리판은 연료와 산화제를 공급해주는 통로 및 전지 운전 중에 생성된 물을 제거하는 통로 역할과 anode, cathode로서 전극 역할을 통해 스택 전력을 형성하는 핵심 기능과 전지와 전지 사이의 지지대 역할을 한다. 따라서 분리판은 전기전도성, 내부식성 및 기계적 특성이 우수해야함은 물론이고, 얇고 가벼우며 가공성이 뛰어나야 한다. 현재 가장 많이 사용되고 있는 금속 분리판 소재 중 스테인리스 스틸은 전기적, 기계적 특성 및 내부식성이 우수한 반면, 가격이 비싸고, 중량이 무거운 단점이 있다. 따라서 본 연구에서는 DC 반응성 마그네트론 스퍼터링법으로 전기적, 기계적 특성 및 내부 식성이 우수한 TiN, TiCN 박막을 스테인리스에 비해 중량이 1/3, 소재 단가가 1/4인 알루미늄 기판 위에 증착하여 박막 물성을 평가하였다. DC Power는 400 W, 기판과 타겟 사이의 거리는100 mm, 공정 압력은 0.5 Pa로 고정하였고, 3 inch의 지름과 순도 99.95%를 갖는 티타늄 타겟을 사용하였다. 공정 가스는 Ar을 주입하였으며, 질소와 탄소의 공급원으로는 질소($N_2$)와 메탄($CH_4$) 가스를 사용하여 챔버 내 주입혼합가스의 전체 유량을 50 sccm으로 고정시켰다. 증착된 박막의 전기적, 기계적 특성을 측정하였고, X-ray diffraction (XRD), Scanning electron microscope (SEM)을 이용하여 박막의 미세구조 및 표면 상태를 확인하였다. 또한, 내부식 특성을 평가하기 위해 potentiostatic, potentiodynamic 법을 이용하여 박막의 부식저항을 측정하였다. 증착된 TiN 박막의 경우 질소 함량의 증가에 따라 박막 증착속도는 감소하는 경향을 보였다. 이는 타겟 부근의 질소 라디칼 비율이 증가함에 따라 질화반응이 촉진된 것으로 생각된다. 또한, 증착된 TiN과 TiCN 박막은 반응성 질소 유량과 탄소 유량에 따라 각각 다른 미세구조를 가지는 것을 확인하였다. TiN과 TiCN은 NaCl형의 면심입방격자(FCC)로 같은 구조이며, 격자상수가 비슷하여 전율고용되어 TiCN을 형성하고, 탄소와 질소의 비에 따라 전기적 기계적 특성이 달라짐을 확인하였다.
Ketene-forming elimination from 2-X-4-nitrophenyl furylacetates (1a-d) promoted by $R_2NH-R_2NH_2{^+}$ in 70 mol % MeCN(aq) has been studied kinetically. When X = Cl and $NO_2$, the reactions exhibited second-order kinetics as well as Br$\ddot{o}$nsted ${\beta}$ = 0.37-0.54 and $|{\beta}_{lg}|$ = 0.31-0.45. The Br$\ddot{o}$nsted ${\beta}$ decreased with a poorer leaving group and $|{\beta}_{lg}|$ increased with a weaker base. The results are consistent with an E2 mechanism. When the leaving group was changed to a poorer one [X= H (1a) and $OCH_3$ (1b)], the reaction mechanism changed to the competing E2 and E1cb mechanisms. A further change to the E1cb mechanism was realized for the reaction of 1a with $i-Pr_2NH/i-Pr_2NH_2{^+}$ in 70 mol % MeCN-30 mol % $D_2O$. By comparing the kinetic results in this study with the existing data for $ArCH_2C(O)OC_6H_3-2-X-4-NO_2$, the effect of the ${\beta}$-aryl group on the ketene-forming elimination was assessed.
본 논문에서는 MEH-PPV와 DFPP의 폴리머 물질을 이용하여 photovoltaic device가 제작되었고, 그림 1에 두 물질의 분자 구조가 보여진다. Photovoltaic cell의 전기-광학적 특성은 활성층의 폴리머 물질에 의해 결정된다. 이러한 특성을 알아보기 위해서 홉수 스펙트럼이 측정되었다. DFPP는 chloroform, chlorobenzen, THF, acetone에 잘 녹았으며, 본 논문에서는 chloroform이 용매로 사용되었다. 제작 공정은 다음과 같다. 인듐 주석 산화물 (ITO)이 증착된 유리기판은 photolithography 공정을 거친 후, 왕수(HNO$_{3}$ + HCL)로 식각됨으로서 전극의 패턴이 제작되었다. 그리고 ITO 전극 패턴 된 유리기판 위에 PEDOT (CH8000, Baytron)이 코팅된 후 Ar이 주입되는 Convection Oven을 이용하여 120$^{\circ}$C에서 2시간 동안 열처리되어 수분이 제거되었다. 활성층에는 MEH-PPV와 DFPP가 9:1과 2.33:1로 혼합된 폴리머가 사용되었고, 이것은 0.3 %w.t.가 되도록 chloroform에 넣어 5시간 동안 스핀바를 돌려서 용해되었다. 이 용액은 ITO 전극 패턴이 형성된 글라스 위에 3000 rpm으로 45 초간 스핀코팅 되었다. 이 때 얻어진 유기물 박막층은 80$^{\circ}$C의 Ar이 주입되는 convection oven에서 3시간 동안 경화되었다. 경화된 단층 유기물 박막층 위에 Li-Al이 1000 ${\AA}$의 두께로 증착되어 전극이 형성되었고, 이후 질소가 채워진 globe box에서 소자는 encapsulation되어 산소와 수분에 대한 영향으로부터 차단되었다. 상기의 공정으로 제작된 소자의 박막구조는 그림 2에서 보여진다. 그림 3은 MEH-PPV와 DFPP를 혼합했을 때의 흡수 스펙트럼이다. 최대 흡수 파장은 511 nm였다. 그리고 photovoltaic cell의 V-I 특성 결과가 그림 4와 같이 측정되었다. 측정에서는 300${\sim}$700 nm의 파장대를 갖는 태양광 모사계가 사용되었고, 셀의 면적은 10 mm$^{2}$였다. 그림 5의 I-V 특성으로부터 MEH-PPV와 DFPP가 9:1 로 혼합했을 때보다 2.33:1 로 혼합했을 때, photovoltaic device의 효율이 향상됨을 확인할 수 있다. 빛이 75 mW/cm$^{2}$ 의 세기로 조사될 때 9:1과 2.33:1로 혼합된 소자의 open circuit voltage (V$_{oc}$)는 비슷하지만, short circuit current Density (J$_{sc}$)는 각각 -1.39 ${\mu}$A/cm$^{2}$ 와 -3.72${\mu}$A/cm$^{2}$ 로 약 2.7배 정도 증가되었음을 볼 수 있다. 이러한 결과를 통해 electron acceptor인 DFPP의 비율이 높아질수록 photovoltaic cell의 conversion efficiency가 더 크게 됨을 확인할 수 있다. 그러므로 효율이 최대가 되는 두 폴리머의 혼합 비율이 최적화되는 조건을 찾는 것은 매우 중요한 연구가 될 것이다.
TEMAT precursor를 사용하여 다양한 증착 조건으로 ICP-CVD 방법으로 Si(100) 기판 위에 TiN 박막을 형성하였다. 형성된 TiN 박막의 결정상, 미세구조, 그리고 전기적 특성은 XRD, XPS, HRTEM, 그리고 전기적 측정으로 특성을 조사하였다. BI 구조를 갖는 다결정 TiN 박막은 기판의 온도가 $200^{\circ}C$ 이상의 온도에서 형성되었다. TiN(111) 박막은 기판의 온도가 $300^{\circ}C$에서 TEMAT, $\textrm{N}_{2}$, 그리고 Ar 가스의 유량이 10, 5, 그리고 5sccm으로 반응로에 주입할 때 형성되었다. TiN/Si(100) 계면은 TiN과 $\textrm{SiO}_2$사이에 계면반응이 없었으며 평탄하였다. 기판의 온도가 $500^{\circ}C$에서 형성된 TiN 박막의 비저항, carrier 농도와 이동도는 21 $\mu\Omega$cm, 9.5$\times\textrm{10}^{18}\textrm{cm}^{-3}$와 $462.6\textrm{cm}^{2}$/Vs으로 주어졌다.
An, Sehoon;Lee, Geun-Hyuk;Song, Inseol;Jang, Seong Woo;Lim, Sang-Ho;Han, Seunghee
한국진공학회:학술대회논문집
/
한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
/
pp.109.2-109.2
/
2015
Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties such as high carrier mobility, chemical stability, and optical transparency. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which need transfer to desired substrates for various applications. However, the transfer steps inevitably induce defects, impurities, wrinkles, and cracks of graphene. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer, which does not require separately deposited catalytic nickel and carbon source layers. The 100 nm NiC layer was deposited on the top of $SiO_2/Si$ substrates by nickel and carbon co-deposition. When the sample was annealed at $1000^{\circ}C$, the carbon atoms diffused through the NiC layer and deposited on both sides of the layer to form graphene upon cooling. The remained NiC layer was removed by using nickel etchant, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. Raman spectroscopy was carried out to confirm the quality of resulted graphene layer. Raman spectra revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Furthermore, the Raman analysis results also demonstrated that gas flow ratio (Ar : $CH_4$) during the NiC deposition and annealing temperature significantly influence not only the number of graphene layers but also structural defects. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.
We report the chemical vapor deposition growth characteristics of graphene on various catalytic metal substrates such as Ni, Fe, Ag, Au, and Pt. 50-nm-thick metal films were deposited on $SiO_2/Si$ substrates using dc magnetron sputtering. Graphene was synthesized on the metal/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90 % Ar (99 SCCM) using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The highest quality of graphene film was achieved on Ni and Fe substrates at $900^{\circ}C$ and 500 W of ICP power. Ni substrate seemed to be the best catalytic material among the tested materials for graphene growth because it required the lowest growth temperature ($600^{\circ}C$) as well as showing a low ICP power of 200W. Graphene films were successfully grown on Ag, Au, and Pt substrates as well. Graphene was formed on Pt substrate within 2 sec, while graphene film was achieved on Ni substrate over a period of 5 min of growth. These results can be understood as showing the direct CVD growth of graphene with a highly efficient catalytic reaction on the Pt surface.
Carbon nanotubes (CNTs) have long been reported as an ideal material due to their excellent electrical conductivity and chemical and mechanical stability as well as their high aspect ratios for field emission devices. CNT emitters made by screen printing the organic binder-based CNT paste may act as a source to release gases inside a vacuum panel. These residual gases may cause a catastrophic damage by electrical arcing or ion bombardment to the vacuum microelectronic devices and may change their physical or electrical properties by adsorbing on the CNT emitter surface. In this study, we analyzed the composition of residual gases inside the vacuum-sealed panel by residual gas analyzer (RGA), investigating the effects of individual gases of different kinds at several pressures on the field emission characteristics of CNT emitters. The residual gases included $H_2$, CO, $CO_2$, $N_2$, $CH_4$, $H_2O$, $C_2H_6$, and Ar. Effect of residual gases on the field emission was studied by observing the variation of the pulse voltages with the duty ratio of3.3% to keep the constant emission current of $28{\mu}A$. Each gas species was introduced to a vacuum chamber up to three different pressures ($5\times10^{-7}$, $5\times10^{-6}$, and $5\times10^{-5}$ torr) each for 1 h while electron emission was continued. The three different pressure regions were separated by keeping a high vacuum of $\sim10^{-8}$ torr for a 1 h. The emission was terminated 6 h after the third gas exposure was completed. Field emission characteristics under residual gases will be discussed in terms of their adsorption and desorption on the surface of CNTs and the resultant change of work function.
Graphene has been synthesized on 100- and 300-nm-thick Ni/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90% Ar (99 SCCM) at $900^{\circ}C$ by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on $SiO_2$/Si substrate after heat treatment at $900^{\circ}C$ for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/$SiO_2$/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/$SiO_2$/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/$SiO_2$/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and $47cm^{-1}$, respectively. The several-layer graphene showed a low sheet resistance value of $718{\Omega}/sq$ and a high light transmittance of 87% at 550 nm.
Nanocrystalline diamond(NCD) coated aluminium plates were prepared and applied as heat sinks for LED modules. NCD films were deposited on 1 mm thick Al plates for times of 2 - 10 h in a microwave plasma chemical vapor deposition reactor. Deposition parameters were the microwave power of 1.2 kW, the working pressure of 90 Torr, the $CH_4/Ar$ gas ratio of 2/200 sccm. In order to enhance diamond nucleation, DC bias voltage of -90 V was applied to the substrate during deposition without external heating. NCD film was identified by X-ray diffraction and Raman spectroscopy. The Al plates with about 300 nm thick NCD film were attached to LED modules and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. Thermal resistance of the module with NCD/Al plate was 3.88 K/W while that with Al plate was 5.55 K/W. The smaller the thermal resistance, the better the heat emission. From structure function analysis, the differences between junction and ambient temperatures were $12.1^{\circ}C$ for NCD/Al plate and $15.5^{\circ}C$ for Al plate. The hot spot size of infrared images was larger on NCD/Al than Al plate for a given period of LED operation. In conclusion, NCD coated Al plate exhibited better thermal spreading performance than conventional Al heat sink.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.