• Title/Summary/Keyword: $C^{*}$-Integral

Search Result 658, Processing Time 0.029 seconds

Analysis of arc characteristics of EHV class GCB using hybrid arc model (하이브리드 아크모델을 이용한 초고압 가스차단기의 아크특성 해석)

  • Park, K.Y.;Song, K.D.;Shin, Y.J.;Chang, K.C.;Song, W.P.;Kwon, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.94-96
    • /
    • 1997
  • A mathematical model (hybrid arc model) for arc behaviour in an $SF_6$ puffer gas-blast circuit-breaker has been developed. It has adopted the advantages of integral method and differential method. The method has been applied to model puffer circuit breaker of Noeske et al and good agreement of critical RRRV(Ratio of Rise of Recovery Voltage) has been obtained. Axial or radial distributions of temperature, electric field and arc radius are also presented and analyzed.

  • PDF

Kinetics of Pyrolysis Degradation of on ${\alpha}-Cellulose$. - Effect of Acid Catalysts NaCl- (${\alpha}$-셀룰로오즈의 열분해에 관한 연구(I) - 산촉매 NaCl의 영향 -)

  • Na, S.D.;Hwang, J.H.;Choi, J.S.;Seul, S.D.;Sohn, J.E.
    • Elastomers and Composites
    • /
    • v.31 no.2
    • /
    • pp.122-129
    • /
    • 1996
  • The Thermal decomposition of the ${\alpha}-Cellulose$ and NaCl was studied using a thermal analysis technique in the steam of nitrogen gas with 30ml/min at various heating ranges from 4 to $20^{\circ}C/min$. The Derivative and Integral method used to be obtained values of activation energy of decomposition reaction. 1. The values of activation energy evaluated by Derivative and Intergral method were consistent with each other very well. 2. The maximum value of heat of decomposition evalated by DSC method was ${\alpha}-Cellulose/NaCl= 90/10$. 3. The thermogravimetric trace curve agreed with the theoretical equation.

  • PDF

On Certain Subclasses of Starlike p-valent Functions

  • Darwish, Hanan Elsayed;Lashin, Abd-el Monem Yousof;Soileh, Soliman Mohammed
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.867-876
    • /
    • 2016
  • The object of the present paper is to investigate the starlikeness of the class of functions $f(z)=z^p+{\sum\limits_{k=n}^{\infty}}a_p+k^{z^{p^{+k}}} (p,n{\in}{\mathbb{N}}=\{1,2,{\ldots}\})$ which are analytic and p-valent in the unit disc U and satisfy the condition $\|(1-{\lambda}({\frac{f(z)}{z^p}})^{\alpha}+{\lambda}{\frac{zf^{\prime}(z)}{pf(z)}}({\frac{f(z)}{z^p}})^{\alpha}-1\|$ < ${\mu}$ (0 < ${\mu}{\leq}1$, ${\lambda}{\geq}0$, ${\alpha}$ > 0, $z{\in}U$). The starlikeness of certain integral operator are also discussed. The results obtained generalize the related works of some authors and some other new results are also obtained.

An Implementation of the Adaptive Ray Tracing Method in the Athena Code

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2016
  • The incorporation of radiation from massive stars is essential for modeling the dynamics and chemistry of star-forming clouds, yet it is a computationally demanding task for three-dimensional problems. We describe the implementation and tests of radiative transfer module due to point sources on a three-dimensional Cartesian grid in the Eulerian MHD code Athena. To solve the integral form of the radiation transfer equation, we adopt a widely-used long characteristics method with spatially adaptive ray tracing in which rays are split when sampling of cells becomes coarse. We use a completely asynchronous communication pattern between processors to accelerate transport of rays through a computational domain, a major source of performance bottleneck. The results of strong and weak scaling tests show that our code performs well with a large number of processors. We apply our radiation hydrodynamics code to some test problems involving dynamical expansion of HII regions.

  • PDF

Excimer Laser-induced Crystallization of Si Films for Manufacturing LTPS TFT-based Displays

  • Chung, U.J.;Limanov, A.B.;Wilt, P.C. Van Der;Chitu, A.M.;Im, James S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.7-7
    • /
    • 2007
  • Laser-irradiation-induced crystallization of as-deposited amorphous precursor films constitutes an integral step in fabricating LTPS TFTs. Consideration of various factors leads one to conclude that, for display manufacturers, choosing how to crystallize the films can be identified as being tactically and strategically significant. This paper will begin by reviewing the fundamental aspects of laser crystallization, and then present noteworthy advances and progress, which have recently been accomplished in the field. In particular, we will focus on communicating the evolving status associated with the sequential lateral solidification (SLS) method, which can be presently identified as the most strategically enabling crystallization method.

  • PDF

Study on Water Pumping System using PV Array (태양전지를 이용한 Water Pumping 시스템 적용에 대한 연구)

  • Choi, Seong-Ho;Jho, Jeong-Min;Lee, Seung-Hwan;Lee, Sang-Jip;Kim, Sung-Nam;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1251-1253
    • /
    • 2000
  • This paper describes control of water pumping system using PV array. An integral part of the system with various system components be constructed PV array. maximum power point tracker BLDC motor and pump. BLDC motor has the quality of torque output and efficiency, has been more widely used in a field for multifarious application. However pumping system using PV array has limited for application because output characteristics of solar cell are greatly fluctuate on the variations of insolation, temperature and loads. For this reson, in this paper each parts efficiently contoroled by the maximum power point tracker, the vector control method of BLDC motor and the pressure PI controller using TMS320C- 31.

  • PDF

Large deflection of simple variable-arc-length beam subjected to a point load

  • Chucheepsakul, S.;Thepphitak, G.;Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-59
    • /
    • 1996
  • This paper considers large deflection problem of a simply supported beam with variable are length subjected to a point load. The beam has one of its ends hinged and at a fixed distance from this end propped by a frictionless support over which the beam can slide freely. This highly nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique, thereby providing independent checks on the new solutions. Because the beam can slide freely over the frictionless support, there is a maximum or critical load which the beam can carry and it is dependent on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for a given load magnitude which is less than the critical value. The maximum arc-length was found to be equal to about 2.19 times the fixed distance between the supports and this value is independent of the load position.

Simplified formulations for flutter instability analysis of bridge deck

  • Vu, Tan-Van;Kim, Young-Min;Han, Tong-Seok;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.359-381
    • /
    • 2011
  • This paper deals with the flutter instability problem of flexible bridge decks in the framework of bimodal-coupled aeroelastic bridge system analysis. Based on the analysis of coefficients of the polynomials deduced from the singularity conditions of an integral wind-structure impedance matrix, a set of simplified formulations for calculating the critical wind velocity and coupled frequency are presented. Several case studies are discussed and comparisons with available approximated approaches are made and presented, along with a conventional complex eigenvalue analysis and numerical results. From the results, it is found that the formulas that are presented in this study are applicable to a variety of bridge cross sections that are not only prone to coupled-mode but also to single-mode-dominated flutter.

Analytical studies on stress concentration due to a rectangular small hole in thin plate under bending loads

  • Yang, Y.;Liu, J.K.;Cai, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.669-678
    • /
    • 2010
  • In general means, the stress concentration problem of elastic plate with a rectangular hole can be investigated by numerical methods, and only approximative results are derived. This paper deduces an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled governing equations with 3-DOF are established, and the analytical displacement solutions of the finite element equations are derived in series form or double integral form. Therefore, the stress concentration factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to demonstrate the application of the proposed method. The inner force distribution is obtained. The solutions are adequate for the condition when the hole is far away from the edges and the thin plate subjected to any transverse loadings.

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Interaction and multiscale mechanics
    • /
    • v.7 no.1
    • /
    • pp.525-542
    • /
    • 2014
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.